Am J Perinatol 2007; 24(5): 277-281
DOI: 10.1055/s-2007-972925
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Celocentesis for In Utero Stem Cell Therapy: Where We Now Stand and Future Directions

Joaquin Santolaya-Forgas1 , Juan De Leon-Luis2 , Louise Wilkins-Haugh1
  • 1Center for Fetal Medicine and Prenatal Genetics, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
  • 2Amarillo Women's Health Research Institute, Department of Obstetrics and Gynecology, Texas Tech University and Health Science Center, Amarillo, Texas
Further Information

Publication History

Publication Date:
04 May 2007 (online)

ABSTRACT

As the number of inborn errors of metabolism that can be diagnosed prenatally by direct DNA analysis increases, so will the number of patients interested in having prenatal diagnosis for these conditions. The phenotypic expression of these inherited inborn errors of metabolism in theory could be prevented by the in utero transplantation of donor stem cells. It is the authors' opinion that ultrasound-guided celocentesis performed in the timed-pregnant baboon animal model could have an important role for determining if stem cell transplantation in the nonfunctional immunocompetent embryo has any clinical potential.

REFERENCES

  • 1 Trigg M E. Hematopoietic stem cells.  Pediatrics. 2004;  113 1051-1057
  • 2 Linch D C, Rodeck C H, Nicolaides K, Jones H M, Brent L. Attempted bone-marrow transplantation in a 17-week fetus.  Lancet. 1986;  2 1453
  • 3 Touraine J L, Raudrant D, Royo C et al.. In-utero transplantation of stem cells in bare lymphocyte syndrome.  Lancet. 1989;  1 1382
  • 4 Touraine J L. In utero transplantation of fetal liver stem cells in humans.  Blood Cells. 1991;  17 379-387
  • 5 Diukman R, Golbus M S. In utero stem cell therapy.  J Reprod Med. 1992;  37 515-520
  • 6 Slavin S, Naparstek E, Ziegler M, Lewin A. Clinical application of intrauterine bone marrow transplantation for treatment of genetic diseases: feasibility studies.  Bone Marrow Transplant. 1992;  9(suppl 1) 189-190
  • 7 Thilaganthan B, Nicolaides K H, Morgan G. Intrauterine bone-marrow transplantation at 12 weeks' gestation.  Lancet. 1993;  342 243
  • 8 Cowan M J, Golbus M. In utero hematopoietic stem cell transplants for inherited diseases.  Am J Pediatr Hematol Oncol. 1994;  16 35-42
  • 9 Westgren M, Ringden O, Eik-Nes S et al.. Lack of evidence of permanent engraftment after in utero fetal stem cell transplantation in congenital hemoglobinopathies.  Transplantation. 1996;  61 1176-1179
  • 10 Flake A W, Roncarolo M G, Puck J M et al.. Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow.  N Engl J Med. 1996;  335 1806-1810
  • 11 Wengler G S, Lanfranchi A, Frusca T et al.. In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDXI).  Lancet. 1996;  348 1484-1487
  • 12 Touraine J L. In utero transplantation of fetal liver stem cells into human fetuses.  J Hematother. 1996;  5 195-199
  • 13 Flake A W, Zanjani E D. In utero hematopoietic stem cell transplantation: a status report.  JAMA. 1997;  278 932-937
  • 14 Bambach B J, Moser H W, Blakemore K et al.. Engraftment following in utero bone marrow transplantation for globoid cell leukodystrophy.  Bone Marrow Transplant. 1997;  19 399-402
  • 15 Hayward A, Ambruso D, Battaglia F et al.. Microchimerism and tolerance following intrauterine transplantation and transfusion for alpha-thalassemia-1.  Fetal Diagn Ther. 1998;  13 8-14
  • 16 Monni G, Ibba R M, Zoppi M A, Floris M. In utero stem cell transplantation.  Croat Med J. 1998;  39 220-223
  • 17 Leung W, Blakemore K, Jones R J et al.. A human-murine chimera model for in utero human hematopoietic stem cell transplantation.  Biol Blood Marrow Transplant. 1999;  5 1-7
  • 18 Westgren M, Ringden O, Bartmann P et al.. Prenatal T-cell reconstitution after in utero transplantation with fetal liver cells in a patient with X-linked severe combined immunodeficiency.  Am J Obstet Gynecol. 2002;  187 475-482
  • 19 Pirovano S, Notarangelo L D, Malacarne F et al.. Reconstitution of T-cell compartment after in utero stem cell transplantation: analysis of T-cell repertoire and thymic output.  Haematologica. 2004;  89 450-461
  • 20 Shields L E, Bryant E M, Easterling T R, Andrews R G. Fetal liver cell transplantation for the creation of lymphohematopoietic chimerism in fetal baboons.  Am J Obstet Gynecol. 1995;  173 1157-1160
  • 21 Tarantal A F, Goldstein O, Barley F, Cowan M J. Transplantation of human peripheral blood stem cells into fetal rhesus monkeys (Macaca mulatta).  Transplantation. 2000;  69 1818-1823
  • 22 Huang S, Zeng F, Gong Z et al.. [A study of the engraftment, expansion and differentiation of human hematopoietic stem cells in goats].  Zhonghua Yi Xue Za Zhi. 2002;  82 86-89
  • 23 Noia G, Pierelli L, Bonanno G et al.. A novel route of transplantation of human cord blood stem cells in preimmune fetal sheep: the intracelomic cavity.  Stem Cells. 2003;  21 638-646
  • 24 Fujiki Y, Fukawa K, Kameyama K et al.. Successful multilineage engraftment of human cord blood cells in pigs after in utero transplantation.  Transplantation. 2003;  75 916-922
  • 25 Young A J, Holzgreve W, Dudler L, Schoeberlein A, Surbek D V. Engraftment of human cord blood-derived stem cells in preimmune ovine fetuses after ultrasound-guided in utero transplantation.  Am J Obstet Gynecol. 2003;  189 698-701
  • 26 Shields L E, Gaur L, Delio P, Potter J, Sieverkropp A, Andrews R G. Fetal immune suppression as adjunctive therapy for in utero hematopoietic stem cell transplantation in nonhuman primates.  Stem Cells. 2004;  22 759-769
  • 27 Blakemore K, Hattenburg C, Stetten G et al.. In utero hematopoietic stem cell transplantation with haploidentical donor adult bone marrow in a canine model.  Am J Obstet Gynecol. 2004;  190 960-973
  • 28 Zeng F, Chen M, Katsumata M et al.. Identification and characterization of engrafted human cells in human/goat xenogeneic transplantation chimerism.  DNA Cell Biol. 2005;  24 403-409
  • 29 Wildman D E, Chen C, Erez O, Grossman L I, Goodman M, Romero R. Evolution of the mammalian placenta revealed by phylogenetic analysis.  Proc Natl Acad Sci U S A. 2006;  103 3203-3208
  • 30 De Leon-Luis J, Santolaya-Forgas J. A catalog of solutes measured in paired extra-embryonic celomic fluid and maternal serum samples.  J Reprod Med. 2006;  51 311-316
  • 31 Santolaya-Forgas J, Wolf R, Edwin S, Pitt A, Nien J K, Romero R. VEGFR-1 and VEGFR-2 concentration in extraembryonic celomic fluid: biological regulators of yolk sac vasculogenesis in primates. Proceedings of the 2006 Miami Nature Biotechnology Winter Symposium. Available at: http://www.med.miami.edu/mnbws/proceedings2006.html Accessed: April 11, 2007
  • 32 Santolaya-Forgas J, Van Hook J, Edwin S et al.. Maternal plasma and celomic fluid concentration of TNFa, TNFR-1, TNFR-2 and rantes in extra-embryonic celomic fluid in pregnant baboons. Paper presented at 53rd Annual Meeting of the Society for Gynecologic Investigation (SGI); March 22-25, 2006, Toronto, Ontario, Canada. 
  • 33 Santolaya-Forgas J, De Leon-Luis J, McCorquodale J. Chromosomal studies in 2mL of celomic fluid obtained during the 5th week of development in the time-pregnant baboon model.  J Reprod Med. 2005;  50 692-696
  • 34 De Leon J, Galan I, Noble V, Gooch J, Santolaya J. Feasibility of human hematopoietic stem cell injection via celocentesis into the pre-immune baboon fetus. Paper presented at Annual Clinical Meeting of the American College of Medical Genetics (ACMG) March 4-7, 2004 Kissimmee, FL;
  • 35 Santolaya-Forgas J, De Leon-Luis J, Galan I. Can the extra-embryonic celomic fluid be partially replaced with stem cell culture medium?.  Ultrasound Obstet Gynecol. 2006;  28 232-233
  • 36 Hendrickx A G. Embryology of the Baboon. Chicago; The University of Chicago Press 1971
  • 37 O'Rahilly R. Early human development and the chief source of information on staged human embryos.  Eur J Obstet Gynecol Reprod Biol. 1979;  9 273-280
  • 38 DeLeon-Luis J A, Santolaya-Forgas J. Application of Carnegie stages of development to unify human and baboon ultrasound findings early in pregnancy.  Ultrasound in Med Biol. 2007;  33 , In press
  • 39 Santolaya-Forgas J, Vengalil S, Meyer W, Fortman J. Transvaginal ultrasonographic (TVS) evaluation of baboon gestation from 37-62 days postconception.  Am J Primatol. 1997;  43 323-328
  • 40 Santolaya-Forgas J, Vengalil S, Kushwaha A, Bieniarz A, Fortman J. Assessment of the risk of fetal loss after the coelocentesis procedure using a baboon model.  Fetal Diagn Ther. 1998;  13 257-260
  • 41 Santolaya-Forgas J, De Leon-Luis J, D'Ancona R L, Morgan J, Kauffman R P. Evolution of the amniotic sac and extracelomic space as seen by early ultrasound examination.  Fetal Diagn Ther. 2003;  18 262-269
  • 42 Plendl J, Gilligan B J, Wang S J et al.. Primitive endothelial cell lines from the porcine embryonic yolk sac.  In Vitro Cell Dev Biol Anim. 2002;  38 334-342
  • 43 Larsen W J. Essentials of Human Embryology. New York; Churchill Livingstone 1998: 250-252

Joaquin Santolaya-ForgasM.D. Ph.D. 

Center for Fetal Medicine and Prenatal Genetics, Department of Obstetrics and Gynecology, Brigham and Women's Hospital

75 Francis Street, Boston, MA 02115

    >