Synlett 2007(2): 0223-0226  
DOI: 10.1055/s-2007-968018
LETTER
© Georg Thieme Verlag Stuttgart · New York

A Novel and Efficient Lewis Acid Catalysed Preparation of Pyrimidines: Microwave-Promoted Reaction of Urea and β-Formyl Enamides

Madan G. Barthakur, Moyurima Borthakur, Prarthana Devi, Chandan J. Saikia, Anil Saikia, Utpal Bora, Apurba Chetia, Romesh C. Boruah*
Medicinal Chemistry Division, Regional Research Laboratory, Jorhat 785006, India
Fax: +91(376)2370011; e-Mail: rc_boruah@yahoo.co.in;
Further Information

Publication History

Received 16 October 2006
Publication Date:
24 January 2007 (online)

Abstract

A novel and efficient synthesis of pyrimidine from β-formyl enamide is described. The key step involves samarium ­chloride catalysed cyclisation of β-formyl enamides using urea as source of ammonia under microwave irradiation.

    References and Notes

  • 1a Brown DJ. In Comprehensive Heterocyclic Chemistry   Vol. 3:  Katritzky AR. Rees CW. Scrieven EFV. Pergamon; Oxford: 1984.  Chap 2.13. p.142-155  
  • 1b Callery P. Gannett P. In Foye’s Principles of Medicinal Chemistry   Williams DA. Lemke TL. Lippincott Williams and Wilkins; Philadelphia: 2002.  p.934-935  
  • 1c Jain KS. Chitre TS. Miniyar PB. Kathiravan MK. Bendre VS. Veer VS. Shahane SR. Shishoo CJ. Curr. Sci.  2006,  90:  793 
  • 2 Botta M. Corelli F. Maga G. Manetti F. Renzulli M. Spadari S. Tetrahedron  2001,  57:  8357 
  • 3 Garg R. Gupta SP. Gao H. Babu MS. Debnath AK. Hansch C. Chem. Rev.  1999,  99:  3525 
  • 4 Botta M. Occhionero F. Nicoletti R. Mastromarino P. Conti C. Magrini M. Saladino R. Bioorg. Med. Chem.  1999,  7:  1925 
  • 5a Hurst D. In An Introduction to Chemistry & Biochemistry of Pyrimidines, Purines & Pteridines   Wiley; Chichester: 1988. 
  • 5b Brown DJ. In The Pyrimidines   Interscience Publishers; New York: 1994. 
  • 6a Zanatta N. Flores DC. Madruga CC. Flores AFC. Bonacorso HG. Martins MAP. Tetrahedron Lett.  2006,  47:  573 
  • 6b Jeong JU. Chen X. Rahman A. Yamashita DS. Luengo JI. Org. Lett.  2004,  6:  1013 
  • 6c Mabry J. Ganem B. Tetrahedron Lett.  2006,  47:  55 
  • 6d Peng Z. Journet M. Humphrey G. Org. Lett.  2006,  8:  395 
  • 6e Cernuchova P. Vo-Thanh G. Milata V. Loupy A. Jantova S. Theiszova M. Tetrahedron  2005,  61:  5379 
  • 7a Lin S. Danishefsky SJ. Angew. Chem. Int. Ed.  2002,  41:  512 
  • 7b Musso DL. Cochran FR. Kelley JL. McLean EW. Selph JL. Rigdon GC. Orr GF. Davis RG. Cooper BR. Styles VL. Thompson JB. Hall WR. J. Med. Chem.  2003,  46:  399 
  • 7c Petersen AB. Petersen MA. Henriksen U. Hammerum S. Dahl O. Org. Biomol. Chem.  2003,  1:  3293 
  • 8a You J. Drexler HJ. Zhang S. Fischer C. Heller D. Angew. Chem. Int. Ed.  2003,  42:  913 
  • 8b Yan Y. Zhang X. Tetrahedron Lett.  2006,  47:  1567 
  • 8c Zhang YJ. Park JH. Lee S. Tetrahedron: Asymmetry  2004,  15:  2209 
  • 9a Ahmed S. Boruah RC. Tetrahedron Lett.  1996,  37:  8231 
  • 9b Boruah RC. Ahmed S. Sharma U. Sandhu JS. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1999,  38:  274 
  • 10a Sharma U. Ahmed S. Boruah RC. Tetrahedron Lett.  2000,  41:  3493 
  • 10b Boruah RC. Ahmed S. Sharma U. Sandhu JS. J. Org. Chem.  2000,  65:  922 
  • 10c Ahmed S. Boruah RC. Tetrahedron Lett.  1997,  38:  1845 
  • 10d Longchar M. Chetia A. Ahmed S. Boruah RC. Sandhu JS. Synth. Commun.  2001,  31:  3281 
  • 11a Varma RS. In Microwaves: Theory and Application in Material Processing IV   Clark DE. Sutton WH. Lewis DA. American Ceramic Society; Westerville / OH: 1997.  p.357-365  
  • 11b Varma RS. Dahiya R. Tetrahedron  1998,  54:  6293 
  • 11c Bora U. Saikia A. Boruah RC. Org. Lett.  2003,  5:  435 
  • 12 Chetia A. Longchar M. Lekhok KC. Boruah RC. Synlett  2004,  1309 
  • 13a Saikia A. Barthakur MG. Borthakur M. Saikia CJ. Bora U. Boruah RC. Tetrahedron Lett.  2006,  47:  43 
  • 13b Barhtakur MG. Chetia A. Boruah RC. Tetrahedron Lett.  2006,  47:  4925 
  • 14 Simon C. Constantieux T. Rodriguez J. Eur. J. Org. Chem.  2004,  4957 
  • 17 Kagan HB. Namy JL. Tetrahedron  1986,  42:  6573 
  • 18 Cooper HBH, and Spencer HW. inventors; US Patent  6077491. 
15

Representative Procedure for the Synthesis of 2′-Methyl-5α-cholest[2,3- e ]pyrimidine ( 4a):
3-Acetamido-2-formyl-5α-cholest-2-ene (2a; 0.46 g,
1 mmol), urea (0.18 g, 3.0 mmol) and samarium chloride hexahydrate (0.55 g, 1.5 mmol) were mixed intimately in a mortar and irradiated in an open reaction vessel of a Synthwave 402 Prolabo focused microwave reactor (manufactured by M/s Prolabo, 54 rue Roger Salengro, Cedex, France) after setting the reaction temperature at 140 °C and the power at 80% (maximum output 300 Watts). On completion of reaction (vide TLC), the reaction mixture was treated with H2O (50 mL) and extracted with CH2Cl2 (3 × 30 mL). The organic portion was washed with H2O, dried over anhyd Na2SO4 and the solvent was removed to obtain a crude product. Column chromatography separation using EtOAc-hexane (1:9) as eluent over silica gel afforded 4a in 82% yield. This procedure was followed for the synthesis of all products listed in Table [1] .

16

Spectral and analytical data of selected compounds:
Compound 4a: mp 90-92 °C; R f = 0.3 (EtOAc-hexane, 20:80). IR (KBr): 2925, 1641, 1582, 1559, 1442 cm-1. 1H NMR (300 MHz. CDCl3): δ = 8.28 (br s, 1 H), 2.65 (s, 3 H), 0. 96 (s, 3 H), 0.74 (s, 3 H), 0.91-2.78 (m, 38 H). 13C NMR (75 MHz, CDCl3): δ = 165.4, 165.4, 157.7, 126.3, 56.8, 54.1, 42.9 (3 × C), 39.9 (2 × C), 36.6, 36.4, 36.1 (2 × C), 35.4, 31.9, 30.0, 28.9, 28.5, 28.3, 25.8, 24.6, 24.2, 23.1, 22.9, 21.7, 19.1, 12.4, 11.9. MS (ESI): m/z = 437 [M+ + 1]. Anal. Calcd for C30H48N2: C, 82.51; H, 11.08; N, 6.41. Found: C, 82.28; H, 10.95; N, 6.59.
Compound 4b: gum; R f = 0.3 (EtOAc-hexane, 30:70). IR (KBr): 2925, 1631, 1578, 1552, 1440 cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.24 (br s, 1 H), 6.19 (br s, 1 H), 2.64 (s, 3 H), 0.94 (s, 3 H), 0.88 (s, 3 H), 1.00-2.82 (m, 35 H). 13C NMR (75 MHz, CDCl3): δ = 166.6, 161.9, 160.0, 154.4, 126.3, 122.5, 56.6, 56.3, 54.2, 42.8, 40.1, 39.9 (2 × C), 39.5, 38.5, 36.5, 36.4, 36.2, 32.5, 31.6, 28.6, 28.4, 26.1, 24.7, 24.2, 23.2, 23.0, 19.1, 18.0, 12.3. MS (ESI): m/z = 435 [M+ + 1].
Compound 4d: mp 165-67 °C; R f = 0.3 (EtOAc-CHCl3, 10:90). IR (KBr): 2943, 1735, 1668, 1594, 1555, 1420, 1245, 1033, 755 cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.31 (br s, 1 H), 5.35 (br s, 1 H), 4.52 (m, 1 H), 2.62 (s, 3 H), 1.97 (s, 3 H), 1.03 (s, 3 H), 0.92 (s, 3 H), 1.06-2.66 (m, 17 H). 13C NMR (75 MHz, CDCl3): δ = 181.9, 170.7, 166.5, 152.0, 140.7, 130.8, 122.1, 74.1, 56.2, 51.0, 46.3, 38.5, 37.3, 33.2, 31.7, 31.2, 29.1, 28.3, 28.1, 26.2, 21.6, 20.8, 19.7, 17.2. MS (ESI): m/z = 381 [M+ + 1]. Anal. Calcd for C24H32N2O2: C, 75.75; H, 8.48; N, 7.36. Found: C, 75.90; H, 8.64; N, 7.17.
Compound 4e: oil; R f = 0.3 (EtOAc-CHCl3, 20:80). IR (KBr): 2925, 1641, 1583, 1553, 1438 cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.29 (s 1 H), 2.83 (t, J = 5.96 Hz, 2 H), 2.70 (t, J = 6.05 Hz, 2 H), 2.65 (s, 3 H), 1.80-1.93 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 166.1, 165.2, 157.2, 127.0, 32.1, 25.8, 25.5, 22.6, 22.5. MS (ESI): m/z = 149 [M+ + 1].
Compound 4h: mp 91-93 °C; R f = 0.5 (EtOAc-CHCl3, 10:90). IR (KBr): 2924, 1655, 1578, 1545, 1435, 825, 773 cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.68 (d, J = 5.34 Hz, 1 H), 8.03 (d, J = 8.55 Hz, 2 H), 7.46-7.49 (m, 3 H), 2.80 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 168.9, 163.2, 158.1, 137.5, 135.7, 129.6 (2 × C), 128.9 (2 × C), 114.1, 26.7. MS (ESI): m/z = 205 [M+ + 1]. Anal. Calcd for C11H9N2Cl: C, 64.55; H, 4.43; N, 13.68. Found: C, 64.41; H, 4.33; N, 13.40.