References and Notes
Reviews on the synthesis of γ-alkylidenebutenolides:
1a
Negishi E.
Kotora M.
Tetrahedron
1997,
53:
6707
1b
Brückner R.
Chem. Commun.
2001,
141
1c
Brückner R.
Curr. Org. Chem.
2001,
5:
679
1d
Rossi R.
Bellina F. In
Targets in Heterocyclic Systems: Chemistry and Properties
Vol. 5:
Attanasi OA.
Spinelli D.
Società Chimica Italiana;
Roma:
2002.
p.169-198
For more recent work, see:
2a
Anastasia L.
Xu C.
Negishi E.
Tetrahedron Lett.
2002,
43:
5673
2b
Rousset S.
Abarbri M.
Thibonnet J.
Parrain J.-L.
Duchêne A.
Tetrahedron Lett.
2003,
44:
7633
2c
Olpp T.
Brückner R.
Angew. Chem. Int. Ed.
2005,
44:
1553
2d
Takayama H.
Sudo R.
Kitajima M.
Tetrahedron Lett.
2005,
46:
5795
2e
Doroh B.
Sulikowski GA.
Org. Lett.
2006,
8:
903
2f
Albrecht U.
Nguyen VTH.
Langer P.
Synthesis
2006,
1111
2g
Olpp T.
Brückner R.
Angew. Chem. Int. Ed.
2006,
45:
4023
Natural melodorinol consists of a ca. 2.5:1 mixture of the R and S enantiomers:
3a
Lu X.
Chen G.
Xia L.
Guo G.
Tetrahedron: Asymmetry
1997,
8:
3067
3b See also: Pohmakort M.
Tuchinda P.
Premkaisorn P.
Limpongpan A.
Reutrakul V.
Heterocycles
1999,
51:
795
Synthesis of xerulin and its relatives:
4a
Siegel K.
Brückner R.
Synlett
1999,
1227
4b
Negishi E.
Alimardanov A.
Xu C.
Org. Lett.
2000,
2:
65
4c
Rossi R.
Belina F.
Catanese A.
Mannina L.
Valensin D.
Tetrahedron
2000,
56:
479
4d
Sorg A.
Siegel K.
Brückner R.
Chem. Eur. J.
2005,
11:
1610
5a
Hjelmgaard T.
Persson T.
Rasmussen TB.
Givskov M.
Nielsen J.
Bioorg. Med. Chem.
2003,
11:
3261
5b
Piper S.
Risch N.
ARKIVOC
2003,
(i):
86
High Z-selectivity has been obtained in some cases under equilibration conditions:
6a
Pohmakort M.
Tuchinda P.
Premkaisorn P.
Reutrakul V.
Tetrahedron
1998,
54:
11297
6b
Sundar N.
Kundu MK.
Reddy PV.
Mahendra G.
Bhat SV.
Synth. Commun.
2002,
32:
1881
7a
Sorg A.
Siegel K.
Brückner R.
Synlett
2004,
321
7b
Sorg A.
Blank F.
Brückner R.
Synlett
2005,
1286
8
Vaz B.
Alvarez R.
Brückner R.
de Lera AR.
Org. Lett.
2005,
7:
545
9a
Boukouvalas J.
Maltais F.
Lachance N.
Tetrahedron Lett.
1994,
35:
7897
9b
Boukouvalas J.
Lachance N.
Ouellet M.
Trudeau M.
Tetrahedron Lett.
1998,
39:
7665
For recent synthetic applications, see:
10a
Bellina F.
Anselmi C.
Viel S.
Mannina L.
Rossi R.
Tetrahedron
2001,
57:
9997
10b
Wu J.
Zhu Q.
Wang L.
Fathi R.
Yang Z.
J. Org. Chem.
2003,
68:
670
10c
Bellina F.
Anselmi C.
Martina F.
Rossi R.
Eur. J. Org. Chem.
2003,
2290
10d
Boukouvalas J.
Pouliot M.
Synlett
2005,
343
In the absence of a β-substituent, stereoselectivities can vary both in magnitude and direction:
11a
Takayama H.
Kuwajima T.
Kitajima M.
Nonato MG.
Aimi N.
Heterocycles
1999,
50:
75
11b
Takayama H.
Ichikawa T.
Kuwajima T.
Kitajima M.
Seki H.
Aimi N.
Nonato MG.
J. Am. Chem. Soc.
2000,
122:
8635
11c
Barbosa LCA.
Demuner AJ.
de Alvarenga ES.
Oliveira A.
King-Diaz B.
Lotina-Hennsen B.
Pest Manag. Sci.
2006,
62:
214
Bromine has previously performed this role in CBS-reduction and TADA reactions:
12a
Nicolaou KC.
Bertinato AD.
Piscopio AD.
Chakraborty TK.
Minowa N.
Chem. Commun.
1993,
619
12b
He F.
Bo Y.
Altom JD.
Corey EJ.
J. Am. Chem. Soc.
1999,
121:
6771
12c
Parker KA.
Fokas D.
J. Org. Chem.
2006,
71:
449
12d
Frank SA.
Roush WR.
J. Org. Chem.
2002,
67:
4316
13
Jas G.
Synthesis
1991,
965
14a
López CS.
Álvarez R.
Vaz B.
Faza ON.
de Lera R.
J. Org. Chem.
2005,
70:
3654
14b
Boeckman RK.
Pero JE.
Boehmler DJ.
J. Am. Chem. Soc.
2006,
128:
11032
15 The major isomers (syn) of all aldol products described herein (5 and 10a-d) were clearly distinguished from their anti counterparts by the upfield shift of their γ-proton
(Δδ ≈ 0.2-0.3 ppm). Their stereochemistry was deduced by debromination of syn-10a/anti-10a to the corresponding butenolides syn-13a/anti-13a whose stereostructures were unambiguously assigned from the diagnostic shift of the β-proton
[5a]
(Scheme
[4]
).
16
Uenishi J.
Kawahama R.
Yonemitsu O.
Tsuji J.
J. Org. Chem.
1998,
63:
8965
17
Typical Procedure: To a solution of 8
[13]
(147 mg, 0. 903 mmol) in anhyd CH2Cl2 (3 mL) at 0 °C were successively added TBSOTf (207 µL, 0. 903 mmol) and Et3N (125 µL, 0. 903 mmol). The mixture was stirred for 30 min at 0 °C, then cooled to -78 °C, and then p-anisaldehyde (100 µL, 0.821 mmol) was added. After stirring at -78 °C for 1 h, DBU (251 µL, 1.64 mmol) was added and the resulting dark purple solution was allowed to warm to r.t. and stirred for an additional 1.5 h before quenching with 15% aq tartaric acid. The aqueous phase was extracted with CH2Cl2 (3 ×) and the combined organic layers were washed with sat. aq NaHCO3, dried over MgSO4 and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel; EtOAc-CH2Cl2-hexanes, 1:3:10) to afford 6b (196 mg, 85%) as a pale red-brown solid; mp 129-130 °C. 1H NMR (400 MHz, CDCl3): δ = 3.86 (s, 3 H), 6.33 (s, 1 H), 6.35 (s, 1 H), 6.95 (d, J = 8.6 Hz, 2 H), 7.79 (d, J = 8.6 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 55.2, 113.5, 114.3, 117.4, 124.8, 132.7, 138.1, 145.0, 160.9, 167.3. MS (CI): m/z = 281 [MH+]. Anal. Calcd for C12H9BrO3: C, 51.27; H, 3.23. Found: C, 51.29; H, 2.99.
Data for 6c: yellow solid; mp 138-139 °C. 1H NMR (400 MHz, CDCl3): δ = 2.55 (br d, J = 1.0 Hz, 3 H), 6.33 (s, 1 H), 6.55 (s, 1 H), 6.78 (dq, J = 3.7, 1.0 Hz, 1 H), 7.26 (d, J = 3.7 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 15.7, 107.6, 117.7, 126.6, 133.0, 133.5, 136.7, 144.2, 147.8, 166.8. MS (CI): m/z = 271 [MH+]. Anal. Calcd for C10H7BrO2S: C, 44.30; H, 2.60; S, 11.83. Found: C, 44.25; H, 2.43; S, 12.19.
Compounds 6a (white solid; mp 84-85 °C) and 6d (yellow oil) exhibited NMR data commensurate with those reported by Brückner.
[7a]
18a
Negishi E.
Xu C.
Tan Z.
Kotora M.
Heterocycles
1997,
48:
209 ; and references cited therein
18b
von der Ohe F.
Brückner R.
New J. Chem.
2000,
24:
659
18c See also ref. 6b.
19
Xu D.
Sharpless KB.
Tetrahedron Lett.
1994,
35:
4685
20 Silyloxyfuran 9 was prepared in 98% yield by silylation (TBSOTf, Et3N, CH2Cl2, r.t.) of the readily available β-bromo-α-methylbutenolide: Svendsen, J. S.; Sydnes, L. K. Acta Chem. Scand. 1990, 44, 202.
Data for 9: colorless oil. 1H NMR (300 MHz, CDCl3): δ = 0.22 (s, 6 H), 0.97 (s, 9 H), 1.80 (s, 3 H), 6.86 (s, 1 H).). 13C NMR (75 MHz, CDCl3): δ = -4.5, 7.4, 17.9, 25.4, 94.0, 104.3, 129.2, 152.4. HRMS (EI): m/z calcd for C11H19BrO2Si: 290.0338; found: 290.0331.
21 Data for 11a: orange oil. 1H NMR (400 MHz, CDCl3): δ = 0.93 (t, J = 7.3 Hz, 3 H), 1.37 (m, 2 H), 1.49 (m, 2 H), 2.41 (q, J = 7.6 Hz, 2 H), 5.62 (dt, J = 0.5, 8.0 Hz, 1 H), 6.34 (d, J = 0.5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 13.7, 22.3, 26.1, 30.8, 117.3, 119.6, 136.9, 148.1, 167.0. HRMS (EI): m/z calcd for C9H11BrO2: 229.9942; found: 229.9938.
Data for 11b: orange oil. 1H NMR (300 MHz, CDCl3): δ = 0.90 (t, J = 7.1 Hz, 3 H), 1.31-1.50 (m, 4 H), 1.96 (s, 3 H), 2.37 (q, J = 7.4 Hz, 2 H), 5.47 (t, J = 7.9 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 10.2, 13.7, 22.3, 25.8, 31.0, 114.5, 128.1, 132.2, 147.0, 167.9. HRMS (EI): m/z calcd for C10H13BrO2: 244.099; found: 244.0098.
Data for 11c: yellow oil. 1H NMR (300 MHz, CDCl3): δ = 2.65 (m, 2 H), 2.72 (m, 2 H), 5.54 (t, J = 7.6 Hz, 1 H), 6.25 (s, 1 H), 7.11-7.25 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 28.0, 34.7, 115.7, 119.8, 126.2, 128.2, 128.4, 136.9, 140.3, 148.3, 166.8. HRMS (EI): m/z calcd for C13H11BrO2: 277.9942; found: 277.9938.
Data for 11d: white solid; mp 66-67 °C. 1H NMR (300 MHz, CDCl3): δ = 3.74 (d, J = 8.1 Hz, 2 H), 5.76 (t, J = 8.1 Hz, 1 H), 6.40 (s, 1 H), 7.22-7.36 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 32.6, 114.9, 120.3, 126.8, 128.6, 128.8, 137.1, 137.9, 148.2, 166.8. Anal. Calcd for C12H9BrO2: C, 54.55; H, 3.44. Found: C, 54.76; H, 3.53.
Data for 11e: white solid; mp 29-31 °C; [α]D
23 +32.5 (c = 1.03, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 1.40 (s, 3 H), 1.47 (s, 3 H), 3.73 (dd, J = 6.7, 8.2 Hz, 1 H), 4.23 (dd, J = 6.7, 8.2 Hz, 1 H), 5.12 (dt, J = 6.7, 8.2 Hz, 1 H), 5.64 (d, J = 8.2 Hz, 1 H), 6.43 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 25.4, 26.5, 69.0, 70.6, 110.0, 112.8, 121.2, 137.0, 148.9, 165.9. HRMS (CI): m/z calcd for C10H11BrO4: 274.9919; found: 274.9915.
22
Boukouvalas J.
Côté S.
Ndzi B.
Tetrahedron Lett.
2007,
48:
105 ; and references cited therein
23
Ma Z.
Morris TW.
Combrink KD.
Ann. Rep. Med. Chem.
2004,
39:
197
24
Jones MB.
Jani R.
Ren D.
Wood TK.
Blaser MJ.
J. Infect. Dis.
2005,
191:
1881