Synthesis 2007(6): 950-956  
DOI: 10.1055/s-2007-965926
PSP
© Georg Thieme Verlag Stuttgart · New York

Copper(I)-Catalyzed Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides with Vinyl Sulfones

Tomás Llamas, Ramón Gómez Arrayás, Juan Carlos Carretero*
Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
Fax: +34(914)973966; e-Mail: juancarlos.carretero@uam.es;
Further Information

Publication History

Received 16 November 2006
Publication Date:
08 February 2007 (online)

Abstract

The combination of copper(I)-Taniaphos (5 mol%) is an efficient Lewis acid catalyst for the promotion of the asymmetric 1,3-dipolar cycloaddition of azomethine ylides to aryl vinyl sulfones, providing 3-sulfonylpyrrolidines in good yields and with nearly complete exo-selectivity and good enantiocontrol (typically 65-85% ee). The transformation of the cycloadducts into cis-2,5-disubstituted pyrrolidines of high enantiopurity (>99% ee) has been accomplished after simple recrystallization followed by N-methylation and subsequent reductive desulfonylation.

    References

  • For reviews on pyrrolidine natural product synthesis, see:
  • 1a Harwood LM. Vickers RJ. In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products   Padwa A. Pearson W. Wiley & Sons; New York: 2002.  Chap. 3.
  • 1b Michael JP. Nat. Prod. Rep.  2004,  21:  625 
  • 1c Cheng Y. Huang Z.-T. Wang M.-X. Curr. Org. Chem.  2004,  8:  325 
  • For recent reviews on asymmetric amino catalysis using proline or related catalysts, see:
  • 2a Berkessel A. Gröger H. Asymmetric Organocatalysis   VCH; Weinheim: 2004. 
  • 2b List B. Chem. Commun.  2006,  819 ; and references cited therein
  • 3 For a recent review, see: Nájera C. Sansano JM. Angew. Chem. Int. Ed.  2005,  44:  6272 
  • 4 Gothelf AS. Gothelf KV. Hazell RG. Jørgensen KA. Angew. Chem. Int. Ed.  2002,  41:  4236 
  • 5a Longmire JM. Wang B. Zhang X. J. Am. Chem. Soc.  2002,  124:  13400 
  • 5b Chen C. Li X. Schreiber SL. J. Am. Chem. Soc.  2003,  125:  10174 
  • 5c Knöpfel TF. Aschwanden P. Ichikawa T. Watanabe T. Carreira EM. Angew. Chem. Int. Ed.  2004,  43:  5971 
  • 5d Stohler R. Wahl F. Pfaltz A. Synthesis  2005,  1431 
  • 5e Zeng W. Zhou Y.-G. Org. Lett.  2005,  7:  5055 
  • 6 Dogan . Koyuncu H. Garner P. Bulut A. Youngs WJ. Panzner M. Org. Lett.  2006,  8:  4687 
  • 7a Cabrera S. Gómez-Arrayás R. Carretero JC. J. Am. Chem. Soc.  2005,  127:  16394 
  • 7b Gao W. Zhang X. Raghunath M. Org. Lett.  2005,  7:  4241 
  • 7c Yan X.-X. Peng Q. Zhang Y. Zhang K. Hong W. Hou X.-L. Wu Y.-D. Angew. Chem. Int. Ed.  2006,  45:  1979 
  • 8 Oderaotoshi Y. Cheng W. Fujitomi S. Kasano Y. Minakata S. Komatsu M. Org. Lett.  2003,  5:  5043 
  • 9a Simpkins NS. Sulfones in Organic Synthesis   Pergamon Press; Oxford: 1993. 
  • 9b Tanaka K. Kaji A. In The Chemistry of Sulphones and Sulphoxides   Patai S. Rappoport Z. Stirling C. Wiley; New York: 1988.  Chap 15. p.759 
  • 9c Fuchs PL. Braish TF. Chem. Rev.  1986,  86:  903 
  • For examples on the participation of vinyl sulfones in noncatalytic asymmetric 1,3-dipolar cycloaddition with azomethine ylides, see:
  • 10a Plancquaert M.-A. Redon M. Janousek Z. Viehe HG. Tetrahedron  1996,  52:  4383 
  • 10b Clark RB. Pearson WH. Org. Lett.  1999,  1:  349 
  • 10c Laduron F. Viehe HG. Tetrahedron Lett.  2002,  58:  3543 
  • 10d Wittland C. Risch N. J. Prakt. Chem.  2000,  342:  311 
  • 10e Garner P. Kaniskan H. Hu J. Youngs WJ. Panzner M. Org. Lett.  2006,  8:  3647 
  • 11 For a review on desulfonylation/functionalization strategies, see: Nájera C. Yus M. Tetrahedron  1999,  55:  10547 
  • 12 Grigg R. Tetrahedron: Asymmetry  1995,  6:  2475 
  • 13 For a recent communication paper of this work, see: Llamas T. Gómez-Arrayás R. Carretero JC. Org. Lett.  2006,  8:  1795 
  • For the use of 2-(dimethylamino)phenyl vinyl sulfones in Heck reactions, see:
  • 17a Mauleón P. Alonso I. Carretero JC. Angew. Chem. Int. Ed.  2001,  40:  1291 
  • 17b Mauleón P. Núñez AA. Alonso I. Carretero JC. Chem. Eur. J.  2003,  9:  1511 
  • For the use of 2-pyridyl sulfones in transition-metal-catalyzed processes, see:
  • 18a Llamas T. Gómez-Arrayás R. Carretero JC. Adv. Synth. Catal.  2004,  346:  1 
  • 18b Mauleón P. Carretero JC. Org. Lett.  2004,  6:  3195 
  • 18c Mauleón P. Carretero JC. Chem. Commun.  2005,  4961 
  • 19 Tsuge H. Okano T. Eguchi S. J. Chem. Soc., Perkin Trans. 1  1995,  2761 
  • 20 The acyclic γ,δ-unsaturated α-amino ester, methyl (R,E)-2-(methylamino)-5-phenylpent-4-enoate (10, see Scheme 3), was also isolated as a byproduct in 28% yield in the desulfonylation step as a result of a Julia-like reaction involving the cleavage of the C-N bond. For related Julia-like reactions, see: Iradier F. Gómez-Arrayás R. Carretero JC. Org. Lett.  2001,  3:  2957 ; and references cited therein
14

The silver(I) acetate catalyzed reaction between 1a and 2a was also studied, providing generally poorer reactivities and enantioselectivities. Interestingly, Taniaphos proved to be also the best ligand in the silver-promoted reaction.

15

A number of well-established commercially available P,P-ligands such as Binap, Chiraphos, Norphos, and Phanephos led to low to moderate enantioselectivities (19-42% ee). Very poor results (<10% ee) were obtained with BOX, PyBOX and phosphoramidite ligands. Ferrocene-based ligands gave superior results in this reaction, the Fesulphos family and the Solvias’ ligands Walphos and Taniaphos providing enantioselectivities in the range of 50-83% ee (see ref. 13).

16

Sulfones 2b-d were readily available by reaction of the corresponding aryl disulfide with vinylmagnesium bromide and subsequent oxidation of the resulting sulfide to sulfone with Na2WO4·2 H2O/H2O2. On the other hand, 2e was prepared from 2-(dimethylamino)phenyl methyl sulfone and formaldehyde. See the Supporting Information in reference 13 for details.

21

Experimental details and analytical data regarding the preparation of imines 1a-j are found within the Supporting Information of reference 13.