References and Notes
1a
Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis, In Organic Nitro Chemistry
Vol. 20:
Torssell KBG.
VCH;
New York:
1988.
1b
Frederickson M.
Tetrahedron
1997,
53:
403
2
Gothelf KV.
Jorgensen KA.
Chem. Rev.
1998,
98:
863
3
Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry towards Heterocycles and Natural Products
Padwa A.
Pearson WH.
John Wiley and Sons;
Hoboken, NJ:
2003.
4
Chiacchio U.
Corsaro A.
Gumina G.
Rescifina A.
Iannanazzo D.
Piperno A.
Romeo G.
Romeo R.
J. Org. Chem.
1999,
64:
9322
5
Ishizuka T.
Matsunaga H.
Iwashita J.
Arai T.
Kunieda T.
Heterocycles
1994,
37:
715
6a
Merino P.
Del Alamo EM.
Santiago F.
Merchan FL.
Simon A.
Tejero T.
Tetrahedron: Asymmetry
2000,
11:
1543
6b
Chiacchio U.
Corsaro A.
Rescifina A.
Romeo G.
Romeo R.
Tetrahedron: Asymmetry
2000,
11:
2045
6c
Chiacchio U.
Corsaro A.
Iannanazzo D.
Piperno A.
Procopio A.
Rescifina A.
Romeo G.
Romeo R.
Eur. J. Org. Chem.
2001,
1893
6d
Fischer R.
Druckova A.
Fisera L.
Ribar A.
Hametner C.
Cyranski MK.
Synlett
2002,
1113 ; and references cited therein
7
Optimized Experimental Procedure for Thermal 1,3-DC.
A stirred toluene solution (5 mL) of dipolarophile (0.5 mmol, 1 equiv) and nitrone (0.5 mmol, 1 equiv) was refluxed under argon. After cooling, the crude mixture was concentrated in vacuo. The product was purified by column chromatography on silica gel.
Physical data of selected isolated adducts.
Compound cis-3: pale yellow oil. IR (neat): 1738, 1194, 1028 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.25 (t, 3 H, J = 7.1 Hz, Et), 2.57 (ddd, 1 H, J = 4.1, 7.6, 13.6 Hz, H-4A), 2.87 (ddd, 1 H, J = 8.2, 9.1, 13.6 Hz, H-4B), 3.55 (dd, 1 H, J = 7.6, 9.1 Hz, H-4′), 3.75 (dt, 1 H, J
4 = 5.9, 9.1 Hz, H-4′), 3.84 (q, 1 H, J = 9.1 Hz), 4.00 (dd, 1 H, J = 13.5 Hz), 4.12 (m, 3 H), 4.29 (m, 2 H, H-5′), 5.92 (dd, 1 H, 3
J
5-4A = 4.1 Hz, 3
J
5-4B = 8.2 Hz, H-5), 7.28-7.37 (m, 5 H, H-Ar). 13C NMR (100 MHz, CDCl3): δ = 13.9 (Et), 36.3 (C-4), 40.8 (C-4′), 61.5, 61.6 (Bn, OEt), 62.3 (C-5′), 66.6 (C-3), 81.5 (C-5), 127.6, 128.2, 129.1, 135.8 (C-Ar), 157.6 (C-2′), 169.8 (C=O).
Compound trans-3: pale yellow oil. IR (neat): 1737, 1182, 1034 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.28 (t, 3 H, 3
J
8-7 = 7.1 Hz, Et), 2.55 (ddd, 1 H, 3
J
4A-5 = 4.4 Hz, 3
J
4A-3 = 7.9 Hz, 2
J
4A-4B = 13.3 Hz, H-4A), 2.83 (ddd, 1 H, 3
J
4B-5 = 6.9 Hz, 3
J
4B-3 = 7.9 Hz, 2
J
4B-4A = 13.3 Hz, H-4B), 3.54 (t, 2 H, 3
J
4
′
-5
′ = 7.9 Hz, H4
′), 3.74 (m, 1 H, H-3), 4.11 (m, 2 H, Bn), 4.18 (q, 2 H, 3
J
7-8 = 7.1 Hz, OEt), 4.30 (t, 2 H, 3
J
4
′
-5
′ = 7.3 Hz, H5
′), 5.84 (dd, 1 H, 3
J
5-4A = 4.4 Hz, 3
J
5-4B = 7.9 Hz, H-5), 7.27-7.38 (m, 5 H, H-Ar). 13C NMR (100 MHz, CDCl3): δ = 14.1 (Et), 35.4 (C-4), 40.4 (C-4′), 60.3 (Bn), 61.5 (OEt), 62.1 (C-5′), 65.3 (C-3), 82.1 (C-5), 127.7, 128.3, 129.3, 135.8 (C-Ar), 157.2 (C-2′), 169.3 (C=O). HRMS (EI): m/z calcd for C16H20N2O5 [M]+: 320.1372; found: 320.1393.
Compound cis-8: colorless crystals; mp 185-186 °C. IR (neat): 1743, 1410, 1234, 1018 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.40 (ddd, 1 H, 3
J
4A-5 = 5.3 Hz, 3
J
4A-3 = 6.3 Hz, 2
J
4A-4B = 13.4 Hz, H-4A), 3.04 (dt, 1 H, 3
J
4B-3 = 3
J
4B-5 = 8.3 Hz, 2
J
4B-4A = 13.4 Hz, H-4B), 3.37 (dt, 1 H, 3
J
4
′
B-5
′
A = 5.3 Hz, 2
J
4
′
B-4
′
A = 3
J
4
′
B-5
′
B = 8.3 Hz, H-4′B), 3.68 (q, 1 H, 3
J
4
′
A-5
′ = 2
J
4
′
A-4
′
B = 8.3 Hz, H-4′A), 4.26 (dt, 1 H, 3
J
5
′
B-4
′ = 8.3 Hz, 2
J
5
′
B-5
′
A = 9.1 Hz, H-5′B), 4.34 (ddd, 1 H, 3
J
5
′
A-4
′
B = 5.3 Hz, 3
J
5
′
A-4
′
A = 8.3 Hz, 2
J
5
′
A-5
′
B = 9.1 Hz, H-5′A), 4.72 (dd, 1 H, 3
J
3-4A = 6.3 Hz, 3
J
3-4B = 8.3 Hz, H-3), 6.13 (dd, 1 H, 3
J
5-4A = 5.3 Hz, 3
J
5-4B = 8.3 Hz, H-5), 7.00 (t, 1 H, J = 7.5 Hz), 7.03 (d, 2 H, J = 7.5 Hz,), 7.24 (t, 2 H, J = 7.5 Hz,), 7.31 (t, 1 H, J = 7.5 Hz), 7.39 (t, 1 H, J = 7.5 Hz), 7.51 (d, 1 H, J = 7.5 Hz,). 13C NMR (100 MHz, CDCl3): δ = 40.2 (C-4′), 41.2 (C-4), 62.3 (C-5′), 70.0 (C-3), 82.4 (C-5), 116.3, 123.2, 126.4, 127.8, 128.9, 129.0, 140.6, 150.2 (C-Ar), 157.8 (C-2′). Anal. Calcd for C18H18N2O3: C, 69.66; H, 5.85; N, 9.03. Found: C, 69.64; H, 5.74; N, 9.18.
Compound trans-15: pale yellow oil. IR (neat): 1731, 1489, 1477, 1324, 1260, 1186 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.32 (t, 3 H, 3
J
8-7 = 7.1 Hz, Et), 2.45 (ddd, 1 H, 3
J
4A-5 = 3.5 Hz, 3
J
4A-3 = 8.1 Hz, 2
J
4A-4B = 13.9 Hz, H-4A), 3.02 (ddd, 1 H, 3
J
4B-5 = 8.1 Hz, 3
J
4B-3 = 9.1 Hz, 2
J
4B-4A = 13.9 Hz, H-4B), 3.59-3.71 (m, 2 H, H-4′), 3.84 (br, 1 H, H3), 4.12 (s, 2 H, Bn), 4.23 (q, 2 H, 3
J
7-8 = 7.1 Hz, OEt), 4.41-4.51 (m, 2 H, H-5′), 6.39 (dd, 1 H, 3
J
5-4A = 3.5 Hz, 3
J
5-4B = 8.1 Hz, H-5), 7.28-7.35 (m, 5 H, H-Ar). 13C NMR (100 MHz, CDCl3): δ = 14.3 (Et), 36.7 (C-4), 43.4 (C-4′), 59.2 (Bn), 61.5 (OEt), 64.8 (C-3), 67.0 (C-5′), 84.7 (C-5), 127.8, 128.4, 129.3, 135.9 (C-Ar), 169.1 (C=O), 187.6 (C-2′). HRMS (ESI+): m/z calcd for C16H20N2O4SK [M + K]+: 375.0781; found: 375.0775.
Compound trans-19: pale yellow oil. IR (neat): 1734, 1474, 1353, 1283, 1208 cm-1. 1H NMR (400 MHz, CDCl2CDCl2, 60 °C): δ = 1.20 (t, 3 H, 3
J
7-8 = 7.1 Hz, Et), 1.22 (s, 3 H, Me), 1.30 (s, 3 H, Me), 2.80 (ddd, 1 H, 3
J
4A-5 = 6.0 Hz, 3
J
4A-3 = 8.6 Hz, 2
J
4A-4B = 13.9 Hz, H-4A), 3.08 (ddd, 1 H, 3
J
4B-3 = 6.3 Hz, 3
J
4B-5 = 7.6 Hz, 2
J
4B-4A = 13.9 Hz, H-4B), 3.97 (dd, 1 H, 3
J
3-4A = 8.6 Hz, 3
J
3-4B = 6.3 Hz, H-3), 4.01 (s, 2 H, Bn), 4.06-4.12 (m, 4 H, OEt and H-5′), 5.74 (dd, 1 H, 3
J
5-4A = 6.0 Hz, 3
J
5-4B = 7.6 Hz, H-5), 7.16-7.29 (m, 5 H, H-Ar). 13C NMR (100 MHz, CDCl2CDCl2, 60 °C): δ = 14.2 (Et), 25.4 (Me), 25.8 (Me), 37.1 (C-4), 60.4 (Bn), 61.3 (OEt), 64.2 (C-4′), 66.0 (C-3), 79.3 (C-5′), 84.6 (C-5), 127.5, 128.2, 129.5, 136.4 (C-Ar), 169.6 (C=O), 186.4 (C-2′).
8
Tamura O.
Mita N.
Gotanda K.
Yamada K.
Nakano T.
Katagiri R.
Sakamoto M.
Heterocycles
1997,
46:
95
9a
Jensen KB.
Hazell RG.
Jørgensen KA.
J. Org. Chem.
1999,
64:
2353
9b
Simonsen KB.
Bayon P.
Hazell RG.
Gothelf KV.
Jørgensen KA.
J. Am. Chem. Soc.
1999,
121:
3845
10
Merino P.
Anoro S.
Cerrada E.
Laguna M.
Moreno A.
Tejero T.
Molecules
2001,
6:
208
11 Complete complexation was ascertained by 1H NMR.
The rearranged nitrone was identified by the low-field signal of the ortho aromatic protons in 1H NMR. For seminal work on the Behrend rearrangement and further studies, see:
12a
Behrend R.
Konig E.
Justus Liebigs Ann. Chem.
1891,
238
12b
Behrend R.
Konig E.
Justus Liebigs Ann. Chem.
1891,
355
12c
Smith PAS.
Gloyer SE.
J. Org. Chem.
1975,
40:
2504
13
Tokunaga Y.
Ihara M.
Fukumoto K.
Tetrahedron Lett.
1996,
37:
6157
14 Under our standard conditions, similar levels of trans-selectivity were observed in the reaction of 1 with ethyl vinyl ether (4:1) and tert-butyl vinyl ether (3:1).
For preparation of dipolarophiles, see:
15a
Gaulon C.
Gizecki P.
Dhal R.
Dujardin G.
Synlett
2002,
952
15b
Gaulon C.
Dhal R.
Dujardin G.
Synthesis
2003,
2269
15c
Chery F.
Desroses M.
Tatibouët A.
De Lucchi O.
Rollin P.
Tetrahedron
2003,
59:
4563
15d
Girniene J.
Tardy S.
Tatibouët A.
Sackus A.
Rollin P.
Tetrahedron Lett.
2004,
45:
6443
16 Such diastereomeric separation was seldom reported for adducts deriving from alkyl vinyl ethers. For a successful case, see: Fischer R.
Dugovi B.
Wiesenganger T.
Fisera L.
Hametner C.
Prónayová N.
Heterocycles
2005,
65:
591
17 For previous use of chiral N-vinyl-1,3-oxazolidin-2-ones in [4+2] asymmetric reactions, see: Gaulon C.
Dhal R.
Chapin T.
Maisonneuve V.
Dujardin G.
J. Org. Chem.
2004,
69:
952
18 For recent use of chiral N-vinyl-1,3-oxazolidine-2-thiones in [4+2] asymmetric reactions, see: Tardy S.
Tatibouët A.
Rollin P.
Dujardin G.
Synlett
2006,
1425