J Reconstr Microsurg 2006; 22(7): 513-518
DOI: 10.1055/s-2006-951316
REVIEW

Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Influence of Transendothelial Mechanisms on Microcirculation: Consequences for Reperfusion Injury after Free Flap Transfer. Previous, Current, and Future Aspects

Andreas Jokuszies1 , Andreas Niederbichler1 , Max Meyer-Marcotty1 , Lars Uwe Lahoda1 , Kerstin Reimers1 , Peter Maria Vogt1
  • 1Department of Plastic and Reconstructive Surgery, Medical School Hannover, Germany
Further Information

Publication History

Accepted: May 17, 2006

Publication Date:
17 October 2006 (online)

ABSTRACT

The success of a free microvascular tissue transfer is based on a sufficient microanastomosis which meets the following requirements: a pedicle placed without kinking or twisting, good drainage, a well-defined recipient vessel, integrity of the endothelium, and duration of ischemia.

The extent of skin and muscle necrosis increases significantly with increases in ischemia time. Reperfusion of ischemic tissue results in local and systemic damage associated with the release of oxygen free radicals, polymorphonuclear leucocytes, and such endothelial hormones as Endothelin-1, EDRF (endothelial-derived relaxing factor), thromboxane, complement, and cytokines. Ischemia-reperfusion disrupts the delicate balance that maintains homeostasis in the microcirculation.

This review discusses the clinical and therapeutic aspects of such injury, concentrating on perioperative management in free flap transfer. It points out the possible influence of Endothelin-1 on vasospasm at the site of anastomosis, and emphasizes the importance of the endothelium as a highly dynamic network. Finally, future diagnostic and therapeutical aspects are discussed.

REFERENCES

  • 1 Gluck T. Ueber Muskel- und Sehnenplastik.  Archiv Klinische Chirurgie. 1881;  26 61-66
  • 2 Helferich H. Ueber Muskeltransplantation beim Menschen.  Archiv Klinische Chirurgie. 1882;  28 562-568
  • 3 Goldwyn R M, Lamb D L, White W L. An experimental study of large island flaps in dogs.  Plast Reconstr Surg. 1963;  31 528-536
  • 4 Krizek T J, Tani T, Desprez J D, Kiehn C L. Experimental transplantation of composite grafts by microsurgical vascular anastomoses.  Plast Reconstr Surg. 1965;  36 538-546
  • 5 Bakamjian V Y. A two-stage method for pharyngoesophageal reconstruction with a primary pectoral skin flap.  Plast Reconstr Surg. 1965;  36 173-184
  • 6 McGregor I A, Jackson I T. The groin flap.  Br J Plast Surg. 1972;  25 3-16
  • 7 Baudet J, Guimberteau J C, Nascimento E. Successful clinical transfer of two free thoraco-dorsal axillary flaps.  Plast Reconstr Surg. 1976;  58 680-688
  • 8 Wei F C, Mardini S. Free-style free flaps.  Plast Reconstr Surg. 2004;  114 910-916
  • 9 Nahabedian M Y, Momen B, Manson P N. Factors associated with anastomotic failure after microvascular reconstruction of the breast.  Plast Reconstr Surg. 2004;  114 74-82
  • 10 Benacquista T, Kasabian A K, Karp N S. The fate of lower extremities with failed free flaps.  Plast Reconstr Surg. 1996;  98 834-840 discussion 841-842
  • 11 Kroll S S, Schusterman M A, Reece G P et al.. Choice of flap and incidence of free flap success.  Plast Reconstr Surg. 1996;  98 459-463
  • 12 Suominen S, Asko-Seljavaara S. Free-flap failures.  Microsurgery. 1995;  16 396-399
  • 13 Lineaweaver W C, Buncke H J. Complications of free flap transfers.  Hand Clin. 1986;  2 347-354
  • 14 Weinzweig N, Gonzales M. Free tissue failure is not an all-or-none phenomenon.  Plast Reconstr Surg. 1995;  96 648-660
  • 15 Battistini B, D'Orleans-Juste P, Sirois P. Biology of disease. Endothelins: circulating plasma levels and presence in other biologic fluids.  Lab Invest. 1993;  68 600-628
  • 16 Doherty A M. Endothelin. A new challenge.  J Med Chem. 1992;  35 1494-1508
  • 17 Sakurai T, Yanagisawa M, Takuwa Y et al.. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor.  Nature. 1990;  348 732-735
  • 18 Lin H Y, Kaji E H, Winkel G K, Ives H E, Lodish H F. Cloning and functional expression of a vascular smooth muscle endothelin 1 receptor.  Proc Natl Acad Sci USA. 1991;  88 3185-3189
  • 19 Masaki T. Possible role of endothelin in endothelial regulation of vascular tone.  Annu Rev Pharmacol Toxicol. 1995;  35 235-255
  • 20 Grace P A. Ischemia-reperfusion injury.  Br J Surg. 1994;  81 637-647
  • 21 Ames A, Wright M, Kowada J M, Thurston G, Majno G. Cerebral ischemia. II. The no-reflow phenomenon.  Amer J Path. 1968;  52 437-447
  • 22 Quinones-Baldrich W J, Chervu A, Hernandez J J, Coburn M, Moore W S. Skeletal muscle function after ischemia: “no-reflow” versus reperfusion injury.  J Surg Res. 1991;  51 5-12
  • 23 Chang H, Wu G J, Wang S M, Hung C R. The role of ET-1 during IRI.  J Formos Med Assoc. 1992;  91 1182-1188
  • 24 Granger D N. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury.  Am J Physiol. 1988;  255 H1269-1275
  • 25 Menger M D, Steiner D, Messmer K. Microvascular ischemia-reperfusion injury in striated muscle: significance of “no-reflow”.  Am J Physiol. 1992;  263 H1892-H1900
  • 26 Verrier E. The microvascular cell and ischemia-reperfusion injury.  J Cardiovasc Pharmacol. 1996;  27(Suppl 1) S26-S30
  • 27 Belkin M, LaMorte W L, Wright J G et al.. The role of leucocytes in the pathophysiology of skeletal muscle ischemia injury.  J Vasc Surg. 1989;  10 14-19
  • 28 Beyersdorf F, Matheis G, Kruger S et al.. Avoiding reperfusion injury after limb revascularization: experimental observations and recommendations for clinical application.  J Vasc Surg. 1989;  9 757-766
  • 29 Lee K R, Cronenwtt J L, Schlafer M, Copron C, Zelenock G B. Effect of superoxide dismutase plus catalase on Ca2 + transport in ischemic and reperfused muscle.  J Surg Res. 1987;  42 24-32
  • 30 Perry M A, Wadhwa S S. Gradual reintroduction of oxygen reduces reperfusion injury in cat stomach.  Am J Physiol. 1988;  254 G366-G372
  • 31 Parks D A, Granger D N. Contributions of ischemia and reperfusion to mucosal lesion formation.  Am J Physiol. 1986;  250 G749-G753
  • 32 Morris S F, Pang C Y, Lindsay W K. Pathogenesis of ischemia-induced tissue damage in latissimus dorsi myocutaneous flaps in pigs.  Surg Forum. 1987;  38 612
  • 33 Whetzel T P, Stevenson T R, Sharman R B, Carlsen R C. The effect of ischemic preconditioning on the recovery of skeletal muscle following tourniquet ischemia.  Plast Reconstr Surg. 1997;  100 1767-1775
  • 34 Menger M D, Kerger D, Gerswald A. Leucocyte endothelium interaction in the microvasculature of postischemic striated muscle.  Advances Experiment Med Biology. 1994;  361 541-545
  • 35 Davies M G, Hagen P O. The vascular endothelium. A new horizon.  Ann Surg. 1993;  218 593-609
  • 36 Lerman A, Burnett J C. Intact and altered endothelium in regulation of vasomotion.  Circulation. 1992;  86(6 Suppl). III12-III19
  • 37 Rubanyi G M, Polokoff M A. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology.  Pharmacol Rev. 1994;  46 325-415
  • 38 Vanhoutte P M, Rubanyi G M, Miller V M, Houston D S. Modulation of vascular smooth muscle contraction by the endothelium.  Ann Rev Physiol. 1986;  48 307-320
  • 39 Strock P E, Majno G. Vascular responses to experimental tourniquet ischemia.  Surg Gynecol Obstet. 1969;  129 309-318
  • 40 Mackinnon S E. What's new in plastic surgery?.  J Am Coll Surg. 1996;  182 150-161
  • 41 Jokuszies A, Jansen V, Lahoda L U, Steinau H U, Vogt P M. Plasmakonzentrationen von Endothelin-1 nach myokutaner Latissimus dorsi-Transplantation-Bedeutung für den Reperfusionsschaden.  Handchir Mikrochir Plast Chir. 2005;  37 193-201
  • 42 Yanagisawa M, Kurihara H, Kimura S et al.. A novel potent vasoconstrictor peptide produced by vascular endothelial cells.  Nature. 1988;  332 411-415
  • 43 Liu J, Chen R, Casley D J, Nayler W G. Ischemia and reperfusion increase 125I labeled endothelin-1 binding in rat cardiac membranes.  Am J Physiol. 1990;  258 H829-H835
  • 44 Miyauchi T, Tomobe Y, Shiba R et al.. Involvement of endothelin in the regulation of human vascular tonus. Potent vasoconstrictor effect and existence in endothelial cells.  Circulation. 1990;  81 1874-1880
  • 45 Costello K B, Stewart D J, Baffour R. Endothelin is a potent constrictor of human vessels used in coronary revascularization surgery.  Eur J Pharmac. 1990;  186 311-314
  • 46 Änggard E E, Botting R M, Vane J R. Endothelins.  Blood Vessels. 1990;  27 269-281
  • 47 Irwin M S, Thorniley M S, Doré C J, Green C J. Near infra-red spectroscopoy: a non-invasive monitor of perfusion and oxygenation within the microcirculation of limbs and flaps.  Br J Plast Surg. 1995;  48 14-22
  • 48 Wu D E, Young D M. Duplex diagnosis of venous insufficiency in a free flap.  Ann Plast Surg. 1995;  34 635-636
  • 49 Knobloch K, Lichtenberg A, Tomaszek S et al.. Long term physical activity and neurologic function after harvesting of the radial artery as T-graft or free graft in coronary revascularization.  Ann Thorac Surg. 2005;  80 918-921
  • 50 Beyersdorf F. Surgical management to avoid severe postreperfusion syndrome: controlled limb perfusion.  Transplant Proc. 1995;  27 2795-2798
  • 51 Gürke L, Marx A, Sutter P M et al.. Ischämische Präkonditionierung verbessert die postischämische Funktion, nicht aber den Energiemetabolismus der Skelettmuskulatur.  Swiss Surg. 1995;  2 107-109
  • 52 Ozbeck M R, Brown D M, Deune E G et al.. Topical tissue factor pathway inhibitor improves free-flap survival in a model simulating free-flap errors.  J Reconstr Microsurg. 1995;  11 185-188
  • 53 Michalet X, Pinaud F F, Bentolila L A et al.. Quantum dots for live cells, in vivo imaging, and diagnostics.  Science. 2005;  307 538-544
  • 54 Tkachenko A G, Xie H, Liu Y et al.. Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains.  Bioconjugate Chem. 2004;  15 482-490

Andreas JokusziesM.D. 

Klinik für Plastische, Hand- und Wiederherstellungs-chirurgie, Medizinesche Hochschule Hannover

30625 Hannover, Deutschland

    >