References and Notes
<A NAME="RW07206ST-1A">1a</A>
Larock RC.
Comprehensive Organic Transformations
VCH;
New York:
1989.
p.819
<A NAME="RW07206ST-1B">1b</A>
Grundmann C. In
Houben-Weyl: Methoden der organischen Chemie
4th ed., Vol. E5:
Falbe J.
Thieme;
Stuttgart:
1985.
p.1313
For the nickel-catalyzed cyanation of aryl halides, see:
<A NAME="RW07206ST-2A">2a</A>
Cassar L.
J. Organomet. Chem.
1973,
54:
57
<A NAME="RW07206ST-2B">2b</A>
Cassar L.
Foà M.
Montanari F.
Marinelli GP.
J. Organomet. Chem.
1979,
173:
335
<A NAME="RW07206ST-2C">2c</A>
Sakakibara Y.
Okuda F.
Shimoyabashi A.
Kirino K.
Sakai M.
Uchino N.
Takagi K.
Bull. Chem. Soc. Jpn.
1988,
61:
1985
<A NAME="RW07206ST-2D">2d</A>
Sakakibara Y.
Ido Y.
Sasaki K.
Sakai M.
Uchino N.
Bull. Chem. Soc. Jpn.
1993,
66:
2776
<A NAME="RW07206ST-2E">2e</A>
Rock M.-H, and
Merhold A. inventors; WO 98/37058.
For the palladium-catalyzed cyanation of aryl halides, see:
<A NAME="RW07206ST-3A">3a</A>
Takagi K.
Okamoto T.
Sakakibara Y.
Oka S.
Chem. Lett.
1973,
471
<A NAME="RW07206ST-3B">3b</A>
Sekiya A.
Ishikawa N.
Chem. Lett.
1975,
277
<A NAME="RW07206ST-3C">3c</A>
Takagi K.
Okamoto T.
Sakakibara Y.
Ohno A.
Oka S.
Hayama N.
Bull. Chem. Soc. Jpn.
1975,
48:
3298
<A NAME="RW07206ST-3D">3d</A>
Takagi K.
Okamoto T.
Sakakibara Y.
Ohno A.
Oka S.
Hayama N.
Bull. Chem. Soc. Jpn.
1976,
49:
3177
<A NAME="RW07206ST-3E">3e</A>
Dalton JR.
Regen SL.
J. Org. Chem.
1979,
44:
4443
<A NAME="RW07206ST-3F">3f</A>
Akita Y.
Shimazaki M.
Ohta A.
Synthesis
1981,
974
<A NAME="RW07206ST-3G">3g</A>
Chatani N.
Hanafusa T.
J. Org. Chem.
1986,
51:
4714
<A NAME="RW07206ST-3H">3h</A>
Takagi K.
Sasaki K.
Sakakibara Y.
Bull. Chem. Soc. Jpn.
1991,
64:
1118
<A NAME="RW07206ST-3I">3i</A>
Anderson Y.
Långström B.
J. Chem. Soc., Perkin Trans. 1
1994,
1395
<A NAME="RW07206ST-3J">3j</A>
Okano T.
Kiji J.
Toyooka Y.
Chem. Lett.
1998,
425
<A NAME="RW07206ST-3K">3k</A>
Anderson BA.
Bell EC.
Ginah FO.
Harn NK.
Pagh LM.
Wepsiec JP.
J. Org. Chem.
1998,
63:
8224
<A NAME="RW07206ST-3L">3l</A>
Maligres PE.
Waters MS.
Fleitz F.
Askin D.
Tetrahedron Lett.
1999,
40:
8193
<A NAME="RW07206ST-3M">3m</A>
Jin F.
Confalone PN.
Tetrahedron Lett.
2000,
41:
3271
<A NAME="RW07206ST-4">4</A>
Sundermeier M.
Zapf A.
Beller M.
Eur. J. Inorg. Chem.
2003,
3513
<A NAME="RW07206ST-5A">5a</A>
Okano M.
Amano M.
Takagi K.
Tetrahedron Lett.
1998,
39:
3001
<A NAME="RW07206ST-5B">5b</A>
Ramnauth J.
Bhardwaj N.
Renton P.
Rhakit S.
Maddafird S.
Synlett
2003,
2237
<A NAME="RW07206ST-5C">5c</A>
Tschaen DM.
Desmond R.
King AO.
Forin MC.
Pipik B.
King S.
Verhoeven TR.
Synth. Commun.
1994,
24:
887
<A NAME="RW07206ST-5D">5d</A>
Marcantonio KM.
Frey LF.
Liu Y.
Chen Y.
Strine J.
Phenix B.
Wallace DJ.
Chen C.-Y.
Org. Lett.
2004,
6:
3723
<A NAME="RW07206ST-5E">5e</A>
Maligres PE.
Waters MS.
Fleitz F.
Askin D.
Tetrahedron Lett.
1999,
40:
8193
<A NAME="RW07206ST-5F">5f</A>
Jiang B.
Kan Y.
Zhang A.
Tetrahedron
2001,
57:
1581
<A NAME="RW07206ST-6A">6a</A>
Chidambaram R.
Tetrahedron Lett.
2004,
45:
1441
<A NAME="RW07206ST-6B">6b</A>
Jin F.
Confalone PN.
Tetrahedron Lett.
2000,
41:
3271
<A NAME="RW07206ST-6C">6c</A>
Okano T.
Iwahara M.
Kiji J.
Synlett
1998,
243
<A NAME="RW07206ST-6D">6d</A>
Stazi F.
Palmisano G.
Turconi M.
Santagostino M.
Tetrahedron Lett.
2005,
46:
1815
<A NAME="RW07206ST-6E">6e</A>
Hatsuda M.
Seki M.
Tetrahedron Lett.
2005,
46:
1849
<A NAME="RW07206ST-6F">6f</A>
Grossman O.
Gelman D.
Org. Lett.
2006,
8:
1189
<A NAME="RW07206ST-7A">7a</A>
Okano T.
Kiji J.
Toyooka Y.
Chem. Lett.
1998,
425
<A NAME="RW07206ST-7B">7b</A>
Cassar L.
Foa M.
J. Organomet. Chem.
1979,
173:
335
<A NAME="RW07206ST-7C">7c</A>
Sundermeier M.
Zapf A.
Beller M.
Angew. Chem. Int. Ed.
2003,
42:
1661
<A NAME="RW07206ST-7D">7d</A>
Sundermeier M.
Mutyala S.
Zapf A.
Spannenberg A.
Beller M.
J. Organomet. Chem.
2003,
684:
50
<A NAME="RW07206ST-7E">7e</A>
Yang C.
Williams JM.
Org. Lett.
2004,
6:
2837
<A NAME="RW07206ST-8A">8a</A> First use of potassium ferrocyanide in this capacity (uncatalyzed reaction):
Merz V.
Weith W.
Ber. Dtsch. Chem. Ges.
1877,
10746
<A NAME="RW07206ST-8B">8b</A>
Schareina T.
Zapf A.
Beller M.
Chem. Commun.
2004,
12:
1388
<A NAME="RW07206ST-8C">8c</A>
Schareina T.
Zapt A.
Beller M.
J. Organomet. Chem.
2004,
689:
4576
<A NAME="RW07206ST-8D">8d</A>
Schareina T.
Zapf A.
Beller M.
Tetrahedron Lett.
2005,
46:
2585
<A NAME="RW07206ST-8E">8e</A>
Weissman SA.
Zewge D.
Chen C.
J. Org. Chem.
2005,
70:
1508
<A NAME="RW07206ST-9A">9a</A>
Wasserscheid P.
Welton T.
Ionic Liquids in Synthesis
Wiley-VCH;
Weinheim:
2002.
<A NAME="RW07206ST-9B">9b</A>
Liao MC.
Duan XH.
Liang YM.
Tetrahedron Lett.
2005,
46:
3469
<A NAME="RW07206ST-10">10</A>
Wu JX.
Beck B.
Ren RX.
Tetrahedron Lett.
2002,
43:
387
<A NAME="RW07206ST-11A">11a</A>
Leadbeater NE.
Torenius HM.
Tye H.
Tetrahedron
2003,
59:
2253
<A NAME="RW07206ST-11B">11b</A>
Cai L.
Liu X.
Tao X.
Shen D.
Synth. Commun.
2004,
34:
1215
<A NAME="RW07206ST-11C">11c</A>
Srivastava RR.
Collibee SE.
Tetrahedron Lett.
2004,
45:
8895
<A NAME="RW07206ST-11D">11d</A>
Arvela RK.
Leadbeater NE.
J. Org. Chem.
2003,
68:
9122
<A NAME="RW07206ST-11E">11e</A>
Arvela RK.
Leadbeater NE.
Torenius HM.
Tye H.
Org. Biomol. Chem.
2003,
1:
1119
<A NAME="RW07206ST-11F">11f</A>
Alterman M.
Hallberg A.
J. Org. Chem.
2000,
65:
7984
<A NAME="RW07206ST-12">12</A>
As the ionic liquid, [BMIm]BF4 was chosen because it was not only most easily manipulated at r.t., but one can be
sure to be able to separate the product from the solvent completely via simple extraction
with a conventional organic solvent and reused.
<A NAME="RW07206ST-13">13</A>
K4[Fe(CN)6]·3H2O is ground to a fine powder and dried under vacuum (ca. 2 mbar) at 80 °C overnight.
<A NAME="RW07206ST-14">14</A>
Microwave experiments were conducted using a CEM Discover Synthesis Unit (CEM Corp.,
Matthews, NC). The machine consists of a continuous focused microwave power delivery
system with operator selectable power output from 0-300 W.
For recent examples, see:
<A NAME="RW07206ST-15A">15a</A>
Ho T.-L.
Su C.-Y.
J. Org. Chem.
2000,
65:
3566
<A NAME="RW07206ST-15B">15b</A>
Williams GM.
Roughley SD.
Davies JE.
Holmes AB.
J. Am. Chem. Soc.
1999,
121:
4900
<A NAME="RW07206ST-15C">15c</A>
Carless HAJ.
Dove Y.
Tetrahedron: Asymmetry
1996,
7:
649
<A NAME="RW07206ST-16A">16a</A>
Fleming FF.
Pu Y.
Tercek F.
J. Org. Chem.
1997,
62:
4883
<A NAME="RW07206ST-16B">16b</A>
Fleming FF.
Hussain Z.
Weaver D.
Norman RE.
J. Org. Chem.
1997,
62:
1305
<A NAME="RW07206ST-16C">16c</A>
Fleming FF.
Pak JJ.
J. Org. Chem.
1995,
60:
4299
<A NAME="RW07206ST-17">17</A>
General Procedure for the Cyanation of Aryl and Arylvinyl Bromides under Microwave
Promotion.
[BMIm]BF4 (1.5 mL) was placed into a 10-mL glass microwave tube and to this was added anhyd
K4[Fe(CN)6] (0.05 mmol), Na2CO3 (0.25 mmol), substrate (0.25 mmol), PdCl2 (2.5 mol%), and DMEDA (10 mol%). After sealing the tube, the mixture was exposed
to microwave irradiation (a maximum microwave power of 120 W, a temperature threshold
of 200 °C and a pressure threshold of 200 psi) for the requisite time. After the reaction
mixture was cooled, the product was extracted from the system by washing the ionic
liquid repeatedly with EtOAc-PE = 8:1 (4 × 3 mL). Finally, the product was isolated
by flash chromatography on silica gel using EtOAc-PE as mobile phase.
<A NAME="RW07206ST-18">18</A>
Compound 2a: 1H NMR (300 MHz, CDCl3): δ = 7.72-7.65 (m, 4 H), 7.60-7.56 (m, 2 H), 7.51-7.41 (m, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 145.5, 139.0, 132.5, 129.0, 128.6, 127.6, 127.1, 118.9, 110.7 ppm. MS: m/z = 179 [M+], 151, 76.
Compound 2c: 1H NMR (300 MHz, CDCl3): δ = 7.81-7.78 (m, 4 H), 7.71 (d, J = 8.7 Hz, 4 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 143.4, 132.8, 127.9, 118.4, 112.3 ppm. MS: m/z = 204 [M+], 153, 126, 76.
Compound 4d: 1H NMR (300 MHz, CDCl3): δ = 8.22 (d, J = 16.5 Hz, 1 H), 8.03 (d, J = 8.1 Hz, 1 H), 7.95-7.87 (m, 2 H), 7.67-7.46 (m, 4 H), 5.96 (d, J = 16.5 Hz, 1 H) ppm.
13C NMR (75 MHz, CDCl3): δ = 147.8, 133.5, 131.5, 130.8, 130.6, 128.8, 127.3, 126.5, 125.3, 124.6, 122.7,
118.2, 98.7 ppm. MS: m/z = 179 [M+], 152, 76.