References and Notes
For reviews, see:
<A NAME="RU00806ST-1A">1a</A>
Lanthanides, Chemistry and Use in Organic Synthesis, In Topics in Organometallic Chemistry
Kobayashi S.
Springer;
Heidelberg:
1999.
<A NAME="RU00806ST-1B">1b</A>
Kobayashi S.
Sc(III) Lewis Acids, In Lewis Acids in Organic Synthesis
Vol. 2:
Yamamoto H.
VCH;
Weinheim:
2000.
Chap. 19.
<A NAME="RU00806ST-1C">1c</A>
Shibasaki M.
Yamada K.
Yoshizawa N.
Lanthanide Lewis Acids Catalysis, In Lewis Acids in Organic Synthesis
Vol. 2:
Yamamoto H.
VCH;
Weinheim:
2000.
Chap. 20.
<A NAME="RU00806ST-1D">1d</A>
Kobayashi S.
Eur. J. Org. Chem.
1999,
15
<A NAME="RU00806ST-1E">1e</A>
Mikami K.
Terada M.
Matsuzawa H.
Angew. Chem. Int. Ed.
2002,
41:
3555
<A NAME="RU00806ST-1F">1f</A>
Shibasaki M.
Yoshizawa N.
Chem. Rev.
2002,
102:
2187
<A NAME="RU00806ST-1G">1g</A>
Kobayashi S.
Sugiura M.
Kitagawa H.
Lam WWL.
Chem. Rev.
2002,
102:
2227
<A NAME="RU00806ST-1H">1h</A>
Inanaga J.
Furuno H.
Hayano T.
Chem. Rev.
2002,
102:
2211
<A NAME="RU00806ST-2A">2a</A>
Sugihara H.
Daikai K.
Jin XL.
Furuno H.
Inanaga J.
Tetrahedron Lett.
2002,
43:
2735
<A NAME="RU00806ST-2B">2b</A>
Jin XL.
Sugihara H.
Daikai K.
Tateshi H.
Jin YZ.
Furuno H.
Inanaga J.
Tetrahedron
2003,
58:
8321
<A NAME="RU00806ST-2C">2c</A>
Yamagiwa N.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2003,
125:
16178
<A NAME="RU00806ST-2D">2d</A>
Ohshima T.
Nemoto T.
Tosaki S.
Kakei H.
Gnanadesikan V.
Shibasaki M.
Tetrahedron
2003,
59:
10485
<A NAME="RU00806ST-2E">2e</A>
Yamagiwa N.
Matsunaga S.
Shibasaki M.
Angew. Chem. Int. Ed.
2004,
43:
4493
<A NAME="RU00806ST-2F">2f</A>
Yamagiwa N.
Qin H.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2005,
127:
13419
<A NAME="RU00806ST-2G">2g</A>
Tosaki S.
Tsuji R.
Ohshima T.
Shibasaki M.
J. Am. Chem. Soc.
2005,
127:
2147
<A NAME="RU00806ST-3A">3a</A>
Evans DA.
Sweeney ZK.
Rovis T.
Tedrow JS.
J. Am. Chem. Soc.
2001,
123:
12095
<A NAME="RU00806ST-3B">3b</A>
Desimoni G.
Faita G.
Guala M.
Pratelli C.
J. Org. Chem.
2003,
68:
7862
<A NAME="RU00806ST-3C">3c</A>
Evans DA.
Wu J.
J. Am. Chem. Soc.
2003,
125:
10162
<A NAME="RU00806ST-3D">3d</A>
Evans DA.
Scheidt KA.
Fandrick KR.
Lam HW.
Wu J.
J. Am. Chem. Soc.
2003,
125:
10780
<A NAME="RU00806ST-3E">3e</A>
Keith JM.
Jacobsen EN.
Org. Lett.
2004,
6:
153
<A NAME="RU00806ST-3F">3f</A>
Desimoni G.
Faita G.
Guala M.
Laurenti A.
Eur. J. Org. Chem.
2004,
3057
<A NAME="RU00806ST-3G">3g</A>
Desimoni G.
Faita G.
Guala M.
Laurenti A.
Mella M.
Chem. Eur. J.
2005,
11:
3816
<A NAME="RU00806ST-3H">3h</A>
Suga H.
Inoue K.
Inoue S.
Kakehi A.
Shiro M.
J. Org. Chem.
2005,
70:
47
<A NAME="RU00806ST-3I">3i</A>
Evans DA.
Wu J.
J. Am. Chem. Soc.
2005,
127:
8006
<A NAME="RU00806ST-3J">3j</A>
Evans DA.
Fandrick KR.
Song H.-J.
J. Am. Chem. Soc.
2005,
127:
8942
<A NAME="RU00806ST-4A">4a</A>
Fukuzawa S.
Fujimoto K.
Komuro Y.
Matsuzawa H.
Org. Lett.
2002,
4:
707
<A NAME="RU00806ST-4B">4b</A>
Fukuzawa S.
Matsuzawa H.
Metoki K.
Synlett
2001,
709
<A NAME="RU00806ST-4C">4c</A>
Fukuzawa S.
Metoki K.
Esumi S.
Tetrahedron
2003,
59:
10445
<A NAME="RU00806ST-4D">4d</A>
Fukuzawa S.
Komuro Y.
Nakano N.
Obara S.
Tetrahedron Lett.
2003,
44:
3671
<A NAME="RU00806ST-5A">5a</A>
Georg GI.
The Organic Chemistry of β-Lactams
VCH;
New York:
1993.
<A NAME="RU00806ST-5B">5b</A>
Ghosez L.
Marchand-Brynaert J. In Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.85
<A NAME="RU00806ST-5C">5c</A>
Palomo C.
Aizpurua JM.
Ganboa I.
Oiarbide M.
Eur. J. Org. Chem.
1999,
3223
<A NAME="RU00806ST-5D">5d</A>
Benaglia M.
Cinquini M.
Cozzi F.
Eur. J. Org. Chem.
2000,
563
<A NAME="RU00806ST-5E">5e</A>
Singh GS.
Tetrahedron
2003,
59:
7631
<A NAME="RU00806ST-5F">5f</A>
Gois PMP.
Afonso CAM.
Eur. J. Org. Chem.
2004,
3773
<A NAME="RU00806ST-5G">5g</A>
France S.
Weatherwax A.
Taggi AE.
Lectka T.
Acc. Chem. Res.
2004,
37:
592
<A NAME="RU00806ST-6A">6a</A>
Müller P.
Fruit C.
Chem. Rev.
2003,
103:
2905
<A NAME="RU00806ST-6B">6b</A>
Dolence EK.
Roylance JB.
Tetrahedron: Asymmetry
2004,
15:
3307
<A NAME="RU00806ST-6C">6c</A>
Galonic DP.
Ide ND.
van der Donk WA.
Gin DY.
J. Am. Chem. Soc.
2005,
127:
7359
<A NAME="RU00806ST-6D">6d</A>
Gao G.-Y.
Harden JD.
Zhang XP.
Org. Lett.
2005,
7:
3191
<A NAME="RU00806ST-6E">6e</A>
Patwardhan AP.
Pulgam VR.
Zhang Y.
Wulff WD.
Angew. Chem. Int. Ed.
2005,
44:
6169
<A NAME="RU00806ST-7A">7a</A>
Liu M.
Sibi P.
Tetrahedron
2002,
58:
7991
<A NAME="RU00806ST-7B">7b</A>
Taggi AE.
Hafez AM.
Lectka T.
Acc. Chem. Res.
2003,
36:
10
<A NAME="RU00806ST-7C">7c</A>
Córdova A.
Acc. Chem. Res.
2004,
37:
102
<A NAME="RU00806ST-7D">7d</A>
Notz W.
Tanaka F.
Barbas CF.
Acc. Chem. Res.
2004,
37:
580
<A NAME="RU00806ST-7E">7e</A>
Córdova A.
Chem. Eur. J.
2004,
10:
1987
<A NAME="RU00806ST-7F">7f</A>
Jacobsen MF.
Ionita L.
Skrydstrup T.
J. Org. Chem.
2004,
69:
4792
<A NAME="RU00806ST-7G">7g</A>
Hamada T.
Manabe K.
Kobayashi S.
J. Am. Chem. Soc.
2004,
126:
7768
<A NAME="RU00806ST-7H">7h</A>
Kobayashi S.
Arai K.
Shimizu H.
Ihori Y.
Ishitani H.
Yamashita Y.
Angew. Chem. Int. Ed.
2005,
44:
761
<A NAME="RU00806ST-7I">7i</A>
Akiyama T.
Suzuki A.
Fuchibe K.
Synlett
2005,
1024
<A NAME="RU00806ST-7J">7j</A>
Takahashi E.
Fujisawa H.
Yanai T.
Mukaiyama T.
Chem. Lett.
2005,
34:
468
<A NAME="RU00806ST-7K">7k</A>
Shi M.
Cui S.-C.
Liu Y.-H.
Tetrahedron
2005,
61:
4965
<A NAME="RU00806ST-7L">7l</A>
Poulsen TB.
Alemparte C.
Saaby S.
Bella M.
Jørgensen AK.
Angew. Chem. Int. Ed.
2005,
44:
2896
<A NAME="RU00806ST-7M">7m</A>
Lu C.-D.
Liu H.
Chen Z.-Y.
Hu W.-H.
Mi A.-Q.
Org. Lett.
2005,
7:
83
<A NAME="RU00806ST-7N">7n</A>
Hamashima Y.
Sasamoto N.
Hotta D.
Somei H.
Umebayashi N.
Sodeoka M.
Angew. Chem. Int. Ed.
2005,
44:
1525
<A NAME="RU00806ST-8A">8a</A>
Falborg L.
Jørgensen AK.
J. Chem. Soc., Perkin Trans. 1
1996,
2823
<A NAME="RU00806ST-8B">8b</A>
Sibi MP.
Shay JJ.
Liu M.
Jasperse CP.
J. Am. Chem. Soc.
1998,
120:
6615
<A NAME="RU00806ST-8C">8c</A>
Zhuang W.
Hazell RG.
Jørgensen AK.
Chem. Commun.
2001,
1240
<A NAME="RU00806ST-8D">8d</A>
Cardillo G.
Gentilucci L.
Matteis VD.
J. Org. Chem.
2002,
67:
5957
<A NAME="RU00806ST-8E">8e</A>
Sibi MP.
Gorikunti U.
Liu M.
Tetrahedron
2002,
58:
8357
<A NAME="RU00806ST-8F">8f</A>
Wabnitz TC.
Spencer JB.
Org. Lett.
2003,
5:
2141
<A NAME="RU00806ST-8G">8g</A>
Xu LW.
Xia CG.
Eur. J. Org. Chem.
2005,
633
<A NAME="RU00806ST-8H">8h</A>
Prieto A.
Fernandez R.
Lassaletta JM.
Vazquez J.
Alvarez E.
Tetrahedron
2005,
61:
4609
<A NAME="RU00806ST-8I">8i</A>
Kantam ML.
Neeraja V.
Kavita B.
Neelima B.
Chandhuri MK.
Hussain S.
Adv. Synth. Catal.
2005,
347:
763
<A NAME="RU00806ST-8J">8j</A>
Verma AK.
Kumar R.
Chaudhary P.
Saxena A.
Sharkar R.
Mozamdar S.
Chandra R.
Tetrahedron Lett.
2005,
46:
5229
<A NAME="RU00806ST-9">9</A>
The bidentate-type substrate was known to produce a good enantioselectivity for the
reaction using rare-earth Lewis acids,
[14]
and the corresponding product, the β-amino-3-acyloxazolidin-2-one derivative, could
be easily transformed into more useful compounds.
If this reaction was carried out without MS 4 Å, the enantioselectivity of both products
decreased [4a; 38% ee (S), 5a; 24% ee (S)]. The effect of molecular sieves has been reported. For examples see:
<A NAME="RU00806ST-10A">10a</A>
Gothelf VK.
Hazell GR.
Jørgensen AK.
J. Org. Chem.
1996,
61:
346
<A NAME="RU00806ST-10B">10b</A>
Kodama H.
Ito J.
Hori K.
Ohta T.
Furukawa I.
J. Organomet. Chem.
2000,
603:
6
<A NAME="RU00806ST-10C">10c</A>
Suga H.
Inoue K.
Inoue S.
Kakehi A.
J. Am. Chem. Soc.
2002,
124:
14836
<A NAME="RU00806ST-10D">10d</A>
Liang G.
Trauner D.
J. Am. Chem. Soc.
2004,
126:
9544
<A NAME="RU00806ST-11">11</A>
The reason of this phenomenon was thought to be the failure of the regeneration of
the complex between Sc(OTf)3 and i-Pr-pybox at cold temperatures.
<A NAME="RU00806ST-12">12</A>
Typical Procedures (Table 2).
Under a nitrogen atmosphere, to the suspension of Sc(OTf)3 (10.34 mg, 0.021 mmol) and MS 4 Å (75 mg), which were predried at 180 °C for 3 h
under reduced pressure, in CH2Cl2 (5 mL) was added pybox (1a, 6.95 mg, 0.023 mmol) in CH2Cl2 (3 mL) at 0 °C. After stirring for 0.5 h, a solution of 3-crotonoyloxazolidin-2-one
(2, 63.61 mg, 0.41 mmol) in CH2Cl2 (3 mL) was added and stirred for an additional 0.5 h. Then, O-benzylhydroxylamine (3, 0.45 mmol), which was used as a CH2Cl2 solution (0.5 M, 0.9 mL, 0.45 mmol), was slowly added dropwise at the same temperature.
After 1 h, the reaction was quenched with sat. aq Na2CO3 and the mixture was extracted with CH2Cl2. The combined organic layer was dried over Na2SO4. This organic layer was filtered and evaporated under reduced pressure. The residue
was purified by recycling preparative HPLC (GPC column, CHCl3 as eluent) to give the desired products. The enantioselectivity was determined by
an HPLC analysis using a chiral column: Chiralpak AD (0.46 cm × 25 cm).
Compound 4a: 1H NMR (300 MHz, CDCl3): δ = 1.17 (d, 3 H, J = 6.45 Hz), 2.87 (dd, 1 H, J = 4.71 Hz, 16.4 Hz), 3.21 (dd, 1 H, J = 8.22 Hz, 16.4 Hz), 3.58-3.67 (m, 1 H), 4.19-4.33 (m, 2 H), 4.67 (s, 2 H), 5.77
(s, 1 H), 7.28-7.37 (m, 5 H). 13C NMR (300 MHz, CDCl3): δ = 18.1, 39.4, 42.2, 52.9, 61.8, 76.3, 127.6, 128.2, 128.3, 137.6, 153.5, 171.9.
Compound 5a: 1H NMR (300 MHz, CDCl3): δ = 1.09 (d, 3 H, J = 6.45 Hz), 2.31 (dd, 1 H, J = 4.08 Hz, 15.2 Hz), 2.36 (dd, 1 H, J = 4.71 Hz, 15.8 Hz), 3.29-3.38 (m, 1 H), 4.52 (s, 2 H), 4.88 (s, 2 H), 5.39 (s, 1
H), 7.24-7.37 (m, 10 H), 9.08 (s, 1 H). 13C NMR (300 MHz, CDCl3): δ = 17.7, 37.7, 52.7, 76.3, 77.9, 128.0, 128.3, 128.4, 128.6, 128.7, 129.1, 135.6,
137.3, 169.2.
<A NAME="RU00806ST-13A">13a</A>
Nishiyama H.
Kondo M.
Nakamura T.
Itoh K.
Organometallics
1991,
10:
500
<A NAME="RU00806ST-13B">13b</A>
Davies IW.
Gerena L.
Lu N.
Larsen RD.
Reider PJ.
J. Org. Chem.
1996,
61:
9629
<A NAME="RU00806ST-14A">14a</A>
Ho G.-J.
Mathre DJ.
J. Org. Chem.
1995,
60:
2271
<A NAME="RU00806ST-14B">14b</A>
Evans DA.
Miller SJ.
Leckta T.
von Matt P.
J. Am. Chem. Soc.
1999,
121:
7559
<A NAME="RU00806ST-14C">14c</A>
Evans DA.
Scheidt KA.
Johnston JN.
Willis MC.
J. Am. Chem. Soc.
2001,
123:
4480