Subscribe to RSS
DOI: 10.1055/s-2006-939052
Thiourea-Catalyzed Direct Reductive Amination of Aldehydes
Publication History
Publication Date:
14 March 2006 (online)

Abstract
A hydrogen-bond-catalyzed direct reductive amination of aldehydes is reported. The acid- and metal-free process uses thiourea as organocatalyst and the Hantzsch ester for transfer-hydrogenation and allows for the high-yielding synthesis of diverse amines.
Key words
amines - reductions - organocatalysis - hydrogen bonds - aminations
- For reviews, see:
- 1a 
             
            Martens J. In Houben-Weyl 4th ed., Vol. E21d:de Meijere A. Thieme; Stuttgart: 1995. p.4199
- 1b 
             
            Baxter EW.Reitz AB. Organic Reactions Vol. 59: Wiley; New York: 2002. p.1
- 1c 
             
            Gomez S.Peters JA.Maschmeyer T. Adv. Synth. Catal. 2002, 344: 1037
- 1d 
             
            Tararov VI.Kadyrov R.Riermeier TH.Fischer C.Börner A. Adv. Synth. Catal. 2004, 346: 561
- 1e 
             
            Ohkuma T.Noyori R. In Comprehensive Asymmetric Catalysis 1st Suppl.:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; New York: 2004.
- 2a 
             
            Ghose AK.Viswanadhan VN.Wendoloski JJ. J. Comb. Chem. 1999, 1: 55
- 2b 
             
            Henkel T.Brunne RM.Mueller H.Reichel F. Angew. Chem. Int. Ed. 1999, 38: 643
- For selected recent examples, see:
- 3a 
             
            Gross T.Seayad AM.Ahmad M.Beller M. Org. Lett. 2002, 4: 2055
- 3b 
             
            Miriyala B.Bhattacharyya S.Williamson JS. Tetrahedron 2004, 60: 1463
- 3c 
             
            Itoh T.Nagata K.Miyazaki M.Ishikawa H.Kurihara A.Ohsawa A. Tetrahedron 2004, 60: 6649
- 4a 
             
            John RO. In Comprehensive Biological Catalysis Vol 2:Sinnot M. Academic Press; London: 1998. p.173Reference Ris Wihthout Link
- 4b 
             
            Silverman RB. The Organic Chemistry of Enzyme-Catalyzed Reactions Academic Press; London: 2002. p.428Reference Ris Wihthout Link
- 5 
             
            Steevens JB.Pandit UK. Tetrahedron 1983, 39: 1395
- 6 
             
            Fujii M.Aida T.Yoshihara M.Ohno A. Bull. Chem. Soc. Jpn. 1989, 62: 3845
- 7 
             
            Itoh T.Nagata K.Kurihara A.Miyazaki M.Ohsawa A. Tetrahedron Lett. 2002, 43: 3105
- 8 
             
            Rueping M.Sugioni E.Azap C.Theissmann T.Bolte M. Org. Lett. 2005, 7: 3781
- 9 
             
            Hoffmann S.Seayad AM.List B. Angew. Chem. Int. Ed. 2005, 44: 7424
- 10 
             
            Storer RI.Carrera DE.Ni Y.MacMillan DWC. J. Am. Chem. Soc. 2006, 128: 84
- For a review and recent examples on the use of urea and analogues in organocatalysis, see:
- 11a 
             
            Berkessel A.Gröger H. Asymmetric Organocatalysis VCH; Weinheim: 2005.
- 11b 
             
            Yoon TP.Jacobsen EN. Angew. Chem. Int. Ed. 2005, 44: 466
- 11c 
             
            Fuerst DE.Jacobsen EN. J. Am. Chem. Soc. 2005, 127: 8964
- 11d 
             
            Berkessel A.Cleemann F.Mukherjee S.Müller TN.Lex J. Angew. Chem. Int. Ed. 2005, 44: 807
- 11e 
             
            Xu X.Yabuta T.Yuan P.Takemoto Y. Synlett 2006, 137
- 12a  
            Benzene and CH2Cl2 are as suitable as toluene, while more polar solvents such as dioxane or THF are less efficient. Protic solvents (e.g. MeOH) are of limited applicability. Reference Ris Wihthout Link
- 12b  
            Upon extended reaction times, the transformation may also be carried out at r.t. Reference Ris Wihthout Link
- 14a  
            The catalyst loading may be reduced to 1 mol% upon extended reaction times (>48 h). Reference Ris Wihthout Link
- 14b  
            Under the same reaction conditions but in the absence of thiourea, the product amine is only obtained in low yields proving the vital influence of the organocatalyst. Reference Ris Wihthout Link
- 15 This assumption is supported by previous calculations on related thiourea complexes
            with aldimines and amines:  
            Vachal P.Jacobsen EN. J. Am. Chem. Soc. 2002, 124: 10012
References and Notes
         General Procedure.
         
A solution of the aldehyde (1a-f, 2.20 mmol) and the amine (2a-g, 2.00 mmol) in toluene (5 mL) is treated with the Hantzsch ester (3, 608 mg, 2.40 mmol), thiourea (4, 15.2 mg, 0.200 mmol) and MS 5 Å (2.0 g). The mixture is stirred 24 h at 70 °C under
         nitrogen. After filtration over Celite®, the solvent is evaporated and the residue purified by flash chromatography on silica
         gel using mixtures of PE and EtOAc as eluants to give the product amines (5a-l) in pure form.
All new compounds had spectroscopic data in support of the assigned structures.
Compound 5d: 1H NMR (300 MHz, CDCl3): δ = 3.73 (s, 3 H), 4.27 (s, 2 H), 6.56 (d, J = 9.04 Hz, 2 H), 6.76 (d, J = 9.04 Hz, 2 H), 7.12 (d, J = 8.48 Hz, 1 H), 7.60 (d, J = 10.74 Hz, 1 H), 8.10 (d, J = 2.26 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 47.95, 55.80, 114.37, 115.02, 120.26, 123.37, 132.45, 133.56, 136.76, 141.58,
         152.66, 154.27. HRMS (ESI): m/z calcd for C14H15N2O4 [M + H]+: 275.1032. Found: 275,1034.
Compound 5k: 1H NMR (300 MHz, CDCl3): δ = 2.54 (s, 3 H), 4.21 (s, 1 H), 4.37 (s, 2 H), 6.71 (d, J = 4.14 Hz, 2 H), 6.82 (d, J = 3.96 Hz 2 H), 7.26-7.36 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 26.73, 48.31, 111.82, 118.01, 127.55, 128.77, 129.40, 138.27, 139.89, 148.29,
         198.57. HRMS (ESI): m/z calcd for C15H16NO [M + H]+: 226,1232. Found: 226,1233.
Compound 5l: 1H NMR (400 MHz, CDCl3): δ = 3.52 (s, 2 H), 4.31 (s, 2 H), 6.60 (d, J = 8.65 Hz, 2 H), 7.07 (d, J = 8.65 Hz, 2 H), 7.26-7.34 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 40.00, 48.47, 113.12, 122.18, 127.54, 128.69, 130.24, 139.24, 139.35, 147.43,
         176.85. HRMS (ESI): m/z calcd for C15H16NO2 [M + H]+: 242.1181. Found: 242.1178.
 
    