Synlett 2006(4): 0555-0558  
DOI: 10.1055/s-2006-932471
LETTER
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Reaction of the First Oxazol-4-ylboronates: Useful Reagents for the Preparation of the Oxazole-Containing Biaryl Compounds

Hiroshi Arakia, Tadashi Katohb, Munenori Inoue*a,c
a Department of Electronic Chemistry, Tokyo Institute of Technology, Nagatsuta, Yokohama 226-8502, Japan
b Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
c Sagami Chemical Research Center, 2743-1 Hayakawa, Ayase, Kanagawa 252-1193, Japan
Fax: +81(467)774113; e-Mail: inoue@sagami.or.jp;
Further Information

Publication History

Received 3 December 2005
Publication Date:
20 February 2006 (online)

Abstract

The first oxazol-4-ylboronates were prepared from the corresponding 4-bromo- and 4-trifluoromethanesulfonyloxy-oxazoles. The Suzuki coupling using the resulting boron reagents with various aryl halides, including benzene, pyridine, oxazole and thiazole rings, in the presence of palladium catalyst proceeded to produce the oxazole-containing biaryl compounds in moderate to good yields.

    References and Notes

  • 1 For a recent review, see: Palmer DC. Venkatraman S. Oxazoles: Synthesis, Reactions and Spectroscopy, In The Chemistry of Heterocyclic Compounds, Part A   Vol 60:  Palmer DC. John Wiley and Sons; New York: 2003.  p.1-390  ; and references therein
  • 2a Lindquist N. Fenical W. Van Duyne GD. Clardy J. J. Am. Chem. Soc.  1991,  113:  2303 
  • 2b Ichiba T. Yoshida WY. Scheuer PJ. Higa T. Gravalos DG. J. Am. Chem. Soc.  1991,  113:  3173 
  • 2c Fusetani N. Yasumuro K. Matsunaga S. Hashimoto K. Tetrahedron Lett.  1989,  30:  2809 
  • 2d Egawa Y. Umino K. Tamura Y. Shimizu M. Kaneko K. Sakurazawa M. Awataguchi S. Okuda T. J. Antibiot.  1969,  22:  12 
  • 2e Shinya K. Wierzba K. Matsuo K. Ohtani T. Yamada Y. Furihata K. Hayakawa Y. Seto H. J. Am. Chem. Soc.  2001,  123:  1262 
  • 2f Sohda K. Nagai K. Yamori T. Suzuki K. Tanaka A. J. Antibiot.  2005,  58:  27 
  • 2g Sohda K. Hiramoto M. Suzumura K. Takebayashi Y. Suzuki K. Tanaka A. J. Antibiot.  2005,  58:  32 
  • 3 Undheim K. In Handbook of Organopalladium Chemistry for Organic Synthesis   Vol 1:  Negishi E. John Wiley and Sons; New York: 2002.  p.409-492  ; and references therein
  • 4 Dondoni A. Fantin G. Fogagnolo M. Medici A. Pedrini P. Synthesis  1987,  693 
  • 5a Barrett AGM. Kohrt JT. Synlett  1995,  415 
  • 5b Collins I. Castro JL. Street LJ. Tetrahedron Lett.  2000,  41:  781 
  • 5c Clapham B. Sutherland AJ. J. Org. Chem.  2001,  66:  9033 
  • 6a Anderson BA. Harn NK. Synthesis  1996,  583 
  • 6b Anderson BA. Becke LM. Booher RN. Flaugh ME. Harn NK. Kress TJ. Varie DL. Wepsiec JP. J. Org. Chem.  1997,  62:  8634 
  • 6c Vedejs E. Luchetta LM. J. Org. Chem.  1999,  64:  1011 
  • 7a Kelly TR. Lang F. J. Org. Chem.  1996,  61:  4623 
  • 7b Boto A. Ling M. Meek G. Pattenden G. Tetrahedron Lett.  1998,  39:  8167 
  • 7c Liu C.-M. Chen B.-H. Liu W.-Y. Wu X.-L. Ma Y.-X. J. Organomet. Chem.  2000,  598:  348 
  • 7d Hodgetts KJ. Kershaw MT. Org. Lett.  2002,  4:  2905 
  • 7e Hodgetts KJ. Kershaw MT. Org. Lett.  2003,  5:  2911 
  • 7f Maekawa T. Sakai N. Tawada H. Murase K. Hazama M. Sugiyama Y. Momose Y. Chem. Pharm. Bull.  2003,  51:  565 
  • 7g Young GL. Smith SA. Taylor RJK. Tetrahedron Lett.  2004,  45:  3797 
  • 8a Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 8b Suzuki A. J. Organomet. Chem.  1999,  576:  147 
  • 9 Tyrrell E. Brookes P. Synthesis  2004,  469 ; and references therein
  • 10a Ishiyama T. Murata M. Miyaura N. J. Org. Chem.  1995,  60:  7508 
  • 10b Ishiyama T. Itoh Y. Kitano T. Miyaura N. Tetrahedron Lett.  1997,  38:  3447 
  • 11 Schaus JV. Panek JS. Org. Lett.  2000,  2:  469 
  • 13a Prager RH. Smith JA. Weber B. Williams CM. J. Chem. Soc., Perkin Trans. 1  1997,  2665 
  • 13b

    The method reported in ref. 13a is inconvenient to synthesize 3. We developed the alternative method to prepare bromide 3 from benzoyl chloride and propargylamine as follows (Scheme [3] ).

  • 17 Self-coupling reaction of the borane reagent 2 occurred to give 2,2′-diphenyl-4,4′-bioxazole in ca. 20% yield. This undesired event sometimes happened in slow Suzuki reaction, see: Moreno-Mañas M. Pérez M. Pleixats R. J. Org. Chem.  1996,  61:  2346 
12

Preparation of 2-Phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxazole ( 2).
A suspension of Pd2(dba)3·CHCl3 (120 mg, 0.13 mmol) and tricyclohexylphosphine (220 mg, 0.78 mmol) in 1,4-dioxane (60 mL) was stirred for 30 min at r.t. under Ar. Bis(pinacolato)diboron (1.46 g, 5.7 mmol), 2-phenyl-4-tri-fluoromethanesulfonyloxyoxazole (1, 1.53g, 5.2 mmol) and KOAc (769 mg, 7.8 mmol) were successively added to the resulting solution. After being at reflux for 2 h, the reaction mixture was diluted with Et2O (300 mL). The resulting mixture was washed with H2O (100 mL) and then dried over Na2SO4. Concentration of the solvent in vacuo gave a residue, which was purified by silica gel column chromato-graphy (hexane-EtOAc, 20:1 to 1:1) to give 2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxazole (2). After recrystallization from hot hexane, pure 2 (1.06 g, 75%) was obtained as colorless needles; mp 124-125 °C. 1H NMR (500 MHz, CDCl3): δ = 1.38 (12 H, s), 7.44 (3 H, m), 8.07 (1 H, s), 8.14 (2 H, m). 13C NMR (125 MHz, CDCl3): δ = 24.8, 84.3, 126.9, 127.3, 128.6, 130.4, 148.0, 162.8; IR (neat) 2996, 2973, 1567, 1363, 1319, 1081, 692 cm-1. HRMS (EI): m/z calcd for C15H18BNO3 [M+]: 271.1380; found: 271.1374.

14

Preparation of 5-Methyl-2-phenyl-4-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)oxazole ( 4).
n-BuLi in n-hexane (1.58 M, 0.42 mL, 0.67 mmol) was added to a stirred solution of 4-bromo-5-methyl-2-phenyl-oxazole (3, 144 mg, 0.65 mmol) in THF (3 mL) at -78 °C under Ar. After 30 min, triisopropylborate (0.17 mL, 0.73 mmol) was added to the resulting solution and stirred for 1 h at the same temperature. The reaction mixture was allowed to warm to r.t. and stirred for 1 h. Pinacol (86 mg, 0.73 mmol) and glacial AcOH (42 µL, 0.73 mmol) were added to the resulting solution and the resulting mixture was stirred for 1 h. The reaction mixture was diluted with Et2O (30 mL) and washed with H2O (10 mL) and then dried over Na2SO4. Concentration of the solvent in vacuo gave a residue, which was purified by silica gel column chromatography (hexane-EtOAc, 1:1) to give 5-methyl-2-phenyl-4-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)-oxazole (4). After recryst-allization from hot hexane, pure 4 (95 mg, 55%) was obtained as colorless needles; mp 108-109 °C. 1H NMR (500 MHz, CDCl3): δ = 1.36 (12 H, s), 2.56 (3 H, s), 7.41 (3 H, m), 8.10 (2 H, m). 13C NMR (125 MHz, CDCl3): δ = 11.8, 24.9, 83.9, 126.5, 127.6, 128.5, 129.9, 160.1, 161.0. IR (neat): 2979, 1593, 1407, 1382, 1317, 1141, 1085, 1050, 696 cm-1. HRMS (EI): m/z calcd for C16H20BNO3 [M+]: 285.1536; found: 285.1532.

15

Although both K2CO3 and K3PO4 worked well in the coupling reaction of 2 with bromobenzene, we chose K2CO3 as a base for further applications due to its milder basicity.

16

General Procedure of the Suzuki Coupling [Synthesis of 2,4-Diphenyloxazole ( 5)]. A solution of 2 (60 mg, 0.22 mmol), bromobenzene (23 µL, 0.22 mmol), tetrakis(triphenylphosphine)palladium(0) (13 mg, 11 µmol) and K2CO3 (92 mg, 0.66 mmol) in DMF (1 mL) was heated at 100 °C for 30 min under Ar. The reaction mixture was diluted with Et2O (30 mL) and washed with H2O (10 mL) and then dried over Na2SO4. Concentration of the solvent in vacuo gave a residue, which was purified by silica gel column chromatography (hexane-EtOAc, 20:1) to give 2,4-diphenyloxazole (5, 43 mg, 88%) as a white solid. All characterization data of 5 were compatible with the literature. [13]