Subscribe to RSS
DOI: 10.1055/s-2005-922781
Sodium Nitrite (NaNO2)
Publication History
Publication Date:
16 December 2005 (online)
Biographical Sketches
Introduction
The well-known NaNO2 (mp 271 °C, d = 2.17) has multiple applications in organic synthesis but also in medicine as a vasodilator, bronchodilator and antidote against cyanide and H2S poisoning. It is produced in the human body from saliva and sodium nitrate to control bacteria in the stomach.
The synthetic utilities of NaNO2 have been extensively investigated in organic chemistry. Nitrosation of primary amines with nitrous acid (generated in situ from sodium nitrite and a strong acid) leads to diazonium salts. These salts are useful synthetic intermediates used in named reactions like Sandmeyer, Balz-Schiemann, [1] Pschorr, [2] and Heck [3] or in the manufacture of diazo dyes. [4] NaNO2 is also used in the synthesis of alkyl nitrites, [5] reagents used for the synthesis of diazonium salts in non-aqueous media [6] or for the diazotization of primary aliphatic amines [7] in DMF.
NaNO2 reacts with SO2 and potassium hydrogen carbonate to afford potassium hydroxylaminedisulfonate salt, which gives after oxidation nitrosodisulfonic acid dipotassium salt. This Fremy’s salt is a useful reagent for the selective oxidation of phenols and aromatic amines to quinones (the Teuber reaction). [8]
Hydroxylamine hydrochloride is synthesized from NaNO2 in a three-step procedure. [9]
Abstracts
(A) tert-Butylcarbazate reacts with NaNO2 in an aqueous media to afford tert-butyl azidoformate [10] which is a convenient reagent for the acylation of amine, hydrazine and similar compounds. [11] |
|
(B) N-Nitroso derivatives [12] of secondary amines are prepared by the action of NaNO2 in aqueous acetic acid. The latter can be reduced by LiAlH4 to give the corresponding hydrazine derivatives. |
|
(C) Oximes [13] can also be easily obtained from malonates or malononitrile and NaNO2 under very mild conditions. Reduction of the oxime allows the formation of the amino derivative. |
|
(D) The benzotriazole ring system [14] is built from monoacyl-o-phenylene diamine and NaNO2 in aqueous acetic acid. |
|
(E) NaNO2 is a very useful reagent for the production of simple aliphatic nitro compounds. [15] An example from α,β-enones is shown here. |
|
(F) Lindén et al. [16] have used NaNO2 in the formation of a tricyclic alloxazines. Nitrite was the key reagent for this ring-closure step. |
|
(G) Liu et al. [17] have shown the utility of NaNO2 as a cocatalyst for the oxidation by TEMPO of alcohols to ketones in water. |
|
(H) Abidi [18] converted the isopropylidene group in geraniol chain into an alkyne group by the action of an excess of NaNO2 in acetic acid. |
|
(I) Panzella et al. [19] showed that NaNO2 in acetate buffer (0.05) M mediated the decarboxylative conjugation of caffeic acid with glutathione under mildly acidic conditions. |
|
- 1
Laali KK.Gettwert VJ. J. Fluorine Chem. 2001, 107: 31 - 2
Wassmundt FW.Kiesman WF. J. Org. Chem. 1995, 60: 96 -
3a
Sengupta S.Sadhukhan S. Org. Synth. 2002, 79: 52 -
3b
Garcia ALL.Carpes MJS.de Oca ACBM.dos Santos MAG.Santana CC.Correia CRD. J. Org. Chem. 2005, 70: 1050 - 4
Wang M.Funabiki K.Matsui M. Dyes Pigments 2003, 7: 77 - 5
Noyes WA. Org. Synth. 1936, 16: 7 - 6
Doyle MP.Siegfried B. J. Org. Chem. 1977, 42: 2426 - 7
Doyle MP.Bosch RJ.Seites PG. J. Org. Chem. 1978, 3: 4120 -
8a
Zimmer H.Lankin DC.Horgan SW. Chem. Rev. 1971, 71: 229 -
8b
Teuber HJ.Jellinek G. Chem. Ber. 1952, 85: 95 - 9
Semon WL. Org. Synth. 1923, 3: 61 - 10
Carpino LA.Carpino BA.Crowley PJ.Giza CA.Terry PH. Org. Synth. 1964, 44: 15 - 11
Carpino LA. J. Am. Chem. Soc. 1957, 79: 4427 - 12
Touré BB.Hall DG. J. Org. Chem. 2004, 69: 8429 -
13a
Zambito AJ.Howe EE. Org. Synth. Coll. Vol. V Wiley; New York: 1973. p.373 -
13b
Ferris JP.Sanchez RA.Mancuso RW. Org. Synth. Coll. Vol. V Wiley; New York: 1973. p.32 - 14
Muir JC.Pattenden G.Ye T. J. Chem. Soc., Perkin Trans. 1 2002, 2243 -
15a
Miyakoshi T.Saito S.Kumanotani J. Chem. Lett. 1982, 83 -
15b
Hong WP.Lee K. Synthesis 2005, 33 - 16
Lindén AA.Hermanns N.Ott S.Krüger L.Bäckvall J. Chem. Eur. J. 2005, 11: 112 - 17
Liu R.Dong C.Liang X.Wang X.Hu X. J. Org. Chem. 2005, 70: 729 - 18
Abidi SL. J. Chem. Soc., Chem. Commun. 1985, 1222 - 19
Panzella L.Napolitano A.d’Ischia M. Bioorg. Med. Chem. Lett. 2002, 12: 3547
References
- 1
Laali KK.Gettwert VJ. J. Fluorine Chem. 2001, 107: 31 - 2
Wassmundt FW.Kiesman WF. J. Org. Chem. 1995, 60: 96 -
3a
Sengupta S.Sadhukhan S. Org. Synth. 2002, 79: 52 -
3b
Garcia ALL.Carpes MJS.de Oca ACBM.dos Santos MAG.Santana CC.Correia CRD. J. Org. Chem. 2005, 70: 1050 - 4
Wang M.Funabiki K.Matsui M. Dyes Pigments 2003, 7: 77 - 5
Noyes WA. Org. Synth. 1936, 16: 7 - 6
Doyle MP.Siegfried B. J. Org. Chem. 1977, 42: 2426 - 7
Doyle MP.Bosch RJ.Seites PG. J. Org. Chem. 1978, 3: 4120 -
8a
Zimmer H.Lankin DC.Horgan SW. Chem. Rev. 1971, 71: 229 -
8b
Teuber HJ.Jellinek G. Chem. Ber. 1952, 85: 95 - 9
Semon WL. Org. Synth. 1923, 3: 61 - 10
Carpino LA.Carpino BA.Crowley PJ.Giza CA.Terry PH. Org. Synth. 1964, 44: 15 - 11
Carpino LA. J. Am. Chem. Soc. 1957, 79: 4427 - 12
Touré BB.Hall DG. J. Org. Chem. 2004, 69: 8429 -
13a
Zambito AJ.Howe EE. Org. Synth. Coll. Vol. V Wiley; New York: 1973. p.373 -
13b
Ferris JP.Sanchez RA.Mancuso RW. Org. Synth. Coll. Vol. V Wiley; New York: 1973. p.32 - 14
Muir JC.Pattenden G.Ye T. J. Chem. Soc., Perkin Trans. 1 2002, 2243 -
15a
Miyakoshi T.Saito S.Kumanotani J. Chem. Lett. 1982, 83 -
15b
Hong WP.Lee K. Synthesis 2005, 33 - 16
Lindén AA.Hermanns N.Ott S.Krüger L.Bäckvall J. Chem. Eur. J. 2005, 11: 112 - 17
Liu R.Dong C.Liang X.Wang X.Hu X. J. Org. Chem. 2005, 70: 729 - 18
Abidi SL. J. Chem. Soc., Chem. Commun. 1985, 1222 - 19
Panzella L.Napolitano A.d’Ischia M. Bioorg. Med. Chem. Lett. 2002, 12: 3547