Synlett 2005(20): 3126-3130  
DOI: 10.1055/s-2005-922748
LETTER
© Georg Thieme Verlag Stuttgart · New York

O-Heterocycles via Laccase-Catalyzed Domino Reactions with O2 as the Oxidant

Heiko Leutbecher, Jürgen Conrad, Iris Klaiber, Uwe Beifuss*
Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
Fax: +49(711)4592951; e-Mail: ubeifuss@uni-hohenheim.de ;
Further Information

Publication History

Received 24 August 2005
Publication Date:
28 November 2005 (online)

Abstract

Laccase-catalyzed domino reactions of 4-hydroxy-6-­methyl-2H-pyran-2-one or substituted 4-hydroxy-2H-chromen-2-ones with catechols using molecular oxygen as an oxidant afford coumestans and related O-heterocycles with yields ranging from 51% to 99%.

    References

  • 1 Faber K. Biotransformations in Organic Chemistry   Springer; Berlin: 2004. 
  • 2a Tietze LF. Modi A. Med. Res. Rev.  2000,  20:  304 
  • 2b Tietze LF. Chem. Rev.  1996,  96:  115 
  • 2c Tietze LF. Beifuss U. Angew. Chem., Int. Ed. Engl.  1993,  32:  131 
  • 3a Claus H. Micron  2004,  35:  93 
  • 3b Mayer AM. Staples RC. Phytochemistry  2002,  60:  551 
  • 3c Thurston CF. Microbiology  1994,  140:  19 
  • 4a Solomon EI. Chen P. Metz M. Lee S.-K. Palmer AE. Angew. Chem. Int. Ed.  2001,  40:  4570 
  • 4b Messerschmidt A. Multi-Copper Oxidases   World Scientific; Singapore: 1997. 
  • 4c Solomon EI. Sundaram UM. Machonkin TE. Chem. Rev.  1996,  96:  2563 
  • 5a Lewis NG. Davin LB. Sarkanen S. In Comprehensive Natural Products Chemistry   Vol. 3:  Barton D. Nakanishi K. Meth-Cohn O. Elsevier; Oxford: 1999.  p.617 
  • 5b Bao W. O’Malley DM. Whetten R. Sederoff RR. Science  1993,  260:  672 
  • 6a Schneider P. Caspersen MB. Mondorf K. Halkier T. Skov LK. Ostergaard PR. Brown KM. Brown SH. Xu F. Enzyme Microb. Technol.  1999,  25:  502 
  • 6b Call HP. Mücke I. J. Biotechnol.  1997,  53:  163 
  • 6c Xu F. Biochemistry  1996,  35:  7608 
  • 6d Xu F. Shin W. Brown SH. Wahleithner JA. Sundaram UM. Solomon EI. Biochim. Biophys. Acta  1996,  1292:  303 
  • 6e Paice MG. Bourbonnais R. Reid ID. Archibald FS. Jurasek L. J. Pulp Pap. Sci.  1995,  21:  J280 
  • 6f Bourbonnais R. Paice MG. Reid ID. Lanthier P. Yaguchi M. Appl. Environ. Microb.  1995,  61:  1876 
  • 6g Skorobogatko OV. Gindilis AL. Troytskaya EN. Shuster AM. Yaropolov AI. Anal. Lett.  1994,  27:  2997 
  • 6h Archibald FS. Paice MG. Jurasek L. Enzyme Microb. Technol.  1990,  12:  846 
  • 6i Reid ID. Paice MG. Ho C. Jurasek L. Tappi J.  1990,  73:  149 
  • 7 Burton SG. Curr. Org. Chem.  2003,  7:  1317 
  • 8a Fabbrini M. Galli C. Gentili P. Macchitella D. Tetrahedron Lett.  2001,  42:  7551 
  • 8b Potthast A. Rosenau T. Chen CL. Gratzl JS. J. Mol. Catal. A: Chem.  1996,  108:  5 
  • 8c Bourbonnais R. Paice MG. FEBS Lett.  1990,  267:  99 
  • 9a Nicotra S. Intra A. Ottolina G. Riva S. Danieli B. Tetrahedron: Asymmetry  2004,  15:  2927 
  • 9b Nicotra S. Cramarossa MR. Mucci A. Pagnoni UM. Riva S. Forti L. Tetrahedron  2004,  60:  595 
  • 9c Carunchio F. Crescenzi C. Girelli AM. Messina A. Tarola AM. Talanta  2001,  55:  189 
  • 9d Shiba T. Xiao L. Miyakoshi T. Chen C.-L. J. Mol. Catal. B: Enzym.  2000,  10:  605 
  • 9e Wallace G. Fry SC. Phytochemistry  1999,  52:  769 
  • 9f Lacki K. Duvnjak Z. Biotechnol. Bioeng.  1998,  57:  694 
  • 10a Niedermeyer THJ. Mikolasch A. Lalk M. J. Org. Chem.  2005,  70:  2002 
  • 10b Pilz R. Hammer E. Schauer F. Kragl U. Appl. Microbiol. Biotechnol.  2003,  60:  708 
  • 10c Mikolasch A. Hammer E. Jonas U. Popowski K. Stielow A. Schauer F. Tetrahedron  2002,  58:  7589 
  • 10d Osiadacz J. Al-Adhami AJH. Bajraszewska D. Fischer P. Peczynska-Czoch W. J. Biotechnol.  1999,  72:  141 
  • 10e Eggert C. Temp U. Dean JFD. Eriksson K.-EL. FEBS Lett.  1995,  376:  202 
  • 11 Friedrichsen W. Comprehensive Heterocyclic Chemistry   Vol. 4:  Katritzky AR. Rees CW. Pergamon Press; Oxford: 1984.  p.995 
  • 12a da Silva AJM. Melo PA. Silva NMV. Brito FV. Buarque CD. de Souza DV. Rodrigues VP. Pocas ESC. Noël F. Albuquerque EX. Costa PRR. Bioorg. Med. Chem. Lett.  2001,  11:  283 
  • 12b Gaido KW. Leonard LS. Lovell S. Toxicol. Appl. Pharmacol.  1997,  143:  205 
  • 12c Pereira NA. Pereira BMR. do Nascimento MC. Parente JP. Mors WB. Planta Med.  1994,  60:  99 
  • 12d Wong SM. Antus S. Gottsegen A. Fessler B. Rao GS. Sonnenbichler J. Wagner H. Arzneim.-Forsch.  1988,  38:  661 
  • 12e Wagner H. Geyer B. Kiso Y. Hikino H. Rao GS. Planta Med.  1986,  52:  370 
  • 13 For a review, see: Stadlbauer W. Kappe T. Heterocycles  1993,  35:  1425 
  • 14a Li CC. Xie ZX. Zhang YD. Chen JH. Yang Z. J. Org. Chem.  2003,  68:  8500 
  • 14b Kraus GA. Zhang N. J. Org. Chem.  2000,  65:  5644 
  • 14c Lee YR. Suk JY. Kim BS. Org. Lett.  2000,  2:  1387 
  • 14d Kamara BI. Brandt EV. Ferreira D. Tetrahedron  1999,  55:  861 
  • 15 Wanzlick H.-W. Gritzky R. Heidepriem H. Chem. Ber.  1963,  96:  305 
  • 16a Singh RP. Singh D. Heterocycles  1985,  23:  903 
  • 16b Rao PP. Srimannarayana G. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1983,  22:  945 
  • 17a Nematollahi D. Forooghi Z. Tetrahedron  2002,  58:  4949 
  • 17b Golabi SM. Nematollahi D. J. Electroanal. Chem.  1997,  420:  127 
  • 18a Pandey G. Muralikrishna C. Bhalerao UT. Tetrahedron  1989,  45:  6867 
  • 18b Bhalerao UT. Muralikrishna C. Pandey G. Synth. Commun.  1989,  19:  1303 
  • 23a Adityachaudhury N. Gupta PK. Phytochemistry  1973,  12:  425 
  • 23b Adityachaudhury N. Gupta PK. Chem. Ind. (London)  1970,  1113 
  • 24a Farkas L. Antus S. Nogradi M. Acta Chim. Acad. Sci. Hung.  1974,  82:  225 
  • 24b Fukui K. Nakayama M. Sesita H. Bull. Chem. Soc. Jpn.  1964,  37:  1887 
  • 25 Livingston AL. Witt SC. Lundin RE. Bickoff EM. J. Org. Chem.  1965,  30:  2353 
  • 26 Jurd L. J. Pharm. Sci.  1965,  54:  1221 
19

General Procedure for Laccase-Catalyzed Domino Reactions. 4-Hydroxy-2H-pyran-2-one (1, 1 equiv, 3.0 mmol), 4-hydroxy-2H-chromen-2-one (6, 1 equiv, 3.0 mmol), and catechol 2 (1.1 equiv, 3.4 mmol) were dissolved in 200 mL acetate buffer (pH 4.37, 0.2 M) and vigorously stirred under air at r.t. in the presence of 25 mg laccase (19 U/mg) of Trametes versicolor until the substrates had been fully consumed, as judged by TLC. The reaction mixture was saturated with NaCl and filtered on a Buchner funnel. The filter cake was washed with a solution of 200 mL 15% NaCl and 10 mL H2O. The crude products obtained after drying exhibited a purity of 90-95% (NMR). Analytically pure products could be obtained by recrystallization. Trans-formations with laccase (320 U/mg) of Agaricus bisporus were performed in a phosphate buffer (pH 6.0, 0.2 M).

20

Selected data for 4e: IR (ATR): 3405, 3119, 1703, 1440, 1296, 1220, 1050, 839 cm-1. UV (MeCN): λmax (lg ε) = 233 (4.28), 335 nm (4.18). 1H NMR (300 MHz, DMSO-d 6): δ = 2.36 (s, 3 H, CH3), 3.83 (s, 3 H, OCH3), 6.95 (s, 1 H, 4-H), 7.20 (s, 1 H, 6-H), 9.51 (br s, 2 H, 7-OH, 8-OH). 13C NMR (75 MHz, DMSO-d 6): δ = 20.51 (CH3), 52.44 (OCH3), 96.36 (C-4), 100.04 (C-6), 103.02 (C-9b), 110.94 (C-9a), 114.45 (C-9), 142.02, 146.40, 148.43 (C-5a, C-7 or C-8), 158.72 (C-1), 162.76 (C-3), 164.31 (C-4a), 166.73 (C=O). MS (EI, 70 eV): m/z (%) = 290 (20) [M+], 258 (100) [M+ - CH4O], 229 (4), 202 (16), 174 (11), 69 (7), 43 (19). HRMS: m/z calcd for C14H10O7: 290.04266; found: 290.04251.

21

Selected data for 5: IR (ATR): 3440, 3092, 2500, 1693, 1636, 1273, 1252, 1046, 832 cm-1. UV (MeCN): λmax (lg ε) = 225 (4.00), 244 (4.08), 347 nm (4.04). 1H NMR (300 MHz, acetone-d 6): δ = 2.42 (s, 3 H, CH3), 6.53 (s, 1 H, 4-H), 7.49 (d, 3 J 9-H, 10-H = 8.7 Hz, 1 H, 9-H or 10-H), 8.39 (d, 3 J 10-H, 9-H = 8.7 Hz, 1 H, 9-H or 10-H), 8.74 (br s, 1 H, OH), 10.87 (br s, 1 H, OH). 13C NMR (75 MHz, acetone-d 6): δ = 19.27 (CH3), 98.95 (C-4), 99.72 (C-10b), 106.14 (C-6a or C-10a), 116.58 (C-9 or C-10), 124.46 (C-9 or C-10), 124.50 (C-6a or
C-10a), 145.42 (C-7 or C-8), 149.31 (C-7 or C-8), 160.13 (C-1, C-4a or C-6), 160.15 (C-1, C-4a or C-6), 163.15 (C-3), 164.33 (C-1 or C-6). MS (EI, 70 eV): m/z (%) = 260 (100) [M+], 245 (4) [M+ - CH3], 232 (4), 189 (5), 176 (11), 161 (6), 120 (15), 43 (25). HRMS: m/z calcd for C13H8O6: 260.03207; found: 260.03162.

22

Selected data for 7f: IR (ATR): 3504, 3207, 1685, 1459, 1318, 1254, 1085, 848, 817 cm-1. UV (MeCN): λmax (lg ε) = 215 (4.57), 250 (4.14), 343 nm (4.21). 1H NMR (300 MHz, DMSO-d 6): δ = 2.43 (s, 3 H, CH3), 4.11 (s, 3 H, OCH3), 7.06 (s, 1 H, 7-H), 7.44 (s, 2 H, 3-H, 4-H), 7.82 (s, 1 H, 1-H), 9.38 (br s, 2 H, 8-OH, 9-OH). 13C NMR (75 MHz, DMSO-d 6): δ = 21.01 (CH3), 61.35 (OCH3), 100.04 (C-7), 106.12 (C-6a or C-6b), 112.66 (C-11b), 115.01 (C-6a or C-6b), 117.49 (C-3 or C-4), 121.51 (C-1), 133.05 (C-3 or C-4), 134.16 (C-10), 135.16 (C-2), 138.16, 142.41, 146.55 (C-8, C-9 or C-10a), 151.32 (C-4a), 158.29 (C-6 or C-11a), 158.67 (C-6 or C-11a). MS (EI, 70 eV): m/z (%) = 312 (100) [M+], 297 (45) [M+ - CH3], 269 (17), 185 (7), 156 (9), 139 (11), 128 (16), 77 (12). Anal. Calcd for C17H12O6 (312.27): C, 65.39; H, 3.87. Found: C, 65.11; H, 4.10.