References
For example, see:
<A NAME="RU27005ST-1A">1a </A>
Procopiou PA.
Bailey EJ.
Chan C.
Inglis GGA.
Lester MG.
Srikantha ARP.
Sidebottom PJ.
Watson NS.
J. Chem. Soc., Perkin Trans. 1
1995,
1341
<A NAME="RU27005ST-1B">1b </A>
Hatano T.
Yoshihara R.
Hattori S.
Yoshizaki M.
Shingu T.
Okuda T.
Chem. Pharm. Bull.
1992,
40:
1703
<A NAME="RU27005ST-1C">1c </A>
Richtmyer NK.
Methods Carbohydr. Chem.
1962,
49:
167
<A NAME="RU27005ST-1D">1d </A>
Takenaka M.
Ono H.
Tetrahedron Lett.
2003,
44:
999
For example, see:
<A NAME="RU27005ST-2A">2a </A>
Hanessian S.
Total Synthesis of Natural Products: The ‘Chiron’ Approach
Pergamon Press;
Oxford:
1983.
<A NAME="RU27005ST-2B">2b </A>
Bols M.
Carbohydrate Building Blocks
John Wiley;
New York:
1996.
p.43-48
<A NAME="RU27005ST-3A">3a </A>
Haricoviniova-Bilikova Z.
Petrus L.
Carbohydr. Res.
1999,
320:
31
<A NAME="RU27005ST-3B">3b </A>
Haricoviniova-Bilikova Z.
Synthesis
2001,
751
<A NAME="RU27005ST-4">4 </A>
Francisco CG.
Herrera AJ.
Suarez E.
J. Org. Chem.
2002,
67:
7439
<A NAME="RU27005ST-5A">5a </A>
Kraus GA.
Molina MT.
J. Org. Chem.
1988,
53:
752
<A NAME="RU27005ST-5B">5b </A>
Czernecki S.
Ville G.
J. Org. Chem.
1989,
54:
610
<A NAME="RU27005ST-6A">6a </A>
Schlesselmann P.
Fritz H.
Lehmann J.
Uchiyama T.
Brewer CF.
Hehre EJ.
Biochemistry
1982,
21:
6606
<A NAME="RU27005ST-6B">6b </A>
Brockhaus M.
Lehmann J.
Carbohydr. Res.
1977,
53:
21
<A NAME="RU27005ST-6C">6c </A>
Li X.
Ohtake H.
Takahashi H.
Ikegami S.
Synlett
2001,
1885
<A NAME="RU27005ST-6D">6d </A>
Penner M.
Taylor D.
Desautels D.
Marat K.
Schweizer F.
Synlett
2005,
212
<A NAME="RU27005ST-7A">7a </A>
Li X.
Ohtake H.
Takahashi H.
Ikegami S.
Tetrahedron
2001,
57:
4297
<A NAME="RU27005ST-7B">7b </A> As the analogues of the 1-C -alkyl-hexopyranose derivatives, the glycosidation using the 1-C -alkoxyalkyl-hexopyranose derivatives was reported. See:
Heskamp BM.
Veeneman GH.
van der Marel GA.
van Boeckel CAA.
van Boom JH.
Tetrahedron
1995,
51:
5657
<A NAME="RU27005ST-7C">7c </A> As the 1-C -alkyl-hexofuranose derivative, the glycosidation using 2,3:5,6-di-O -isopropyl-idene-1-C -methyl-d -mannofuranosyl acetate was reported. See:
Dondoni A.
Marra A.
Rojo I.
Scherrmann M.-C.
Tetrahedron
1996,
52:
3057
<A NAME="RU27005ST-8">8 </A>
Yamanoi T.
Oda Y.
Yamazaki I.
Shinbara M.
Morimoto K.
Matsuda S.
Lett. Org. Chem.
2005,
2:
242
Compounds 1a -e and 6a were synthesized as follows (Scheme 3). The reaction of 6-O -acetyl-2,3,4-tri-O -benzyl-d -glucopyranose (9 ) using DMSO-Ac2 O gave the corresponding 6-O -acetyl-2,3,4-tri-O -benzyl-d -glucono-1,5-lactone (10 ) in the good yield of 92%. The alkyl groups were then introduced into C-1 of 10 by the reaction of the carbonyl group at C-1 with organometallic reagents such as
RMgX or RLi. The reaction of 10 with MeLi (2.4 equiv) in dry THF at -78 °C gave 6-O -acetyl-2,3,4-tri-O -benzyl-1-C -methyl-α-d -glucopyranose (11a ) and 2,3,4-tri-O -benzyl-1-C -methyl-α-d -glucopyranose (1a ) in 14% and 64% yields, respectively. The treatment of 11a using NaOMe in MeOH quantitatively afforded 1a . The reaction using AllMgCl and n -BuLi similarly gave the mixtures of 6-O -acetyl-1-C -allyl-2,3,4-tri-O -benzyl-α-d -glucopyranose (11b ) and 1-C -allyl-2,3,4-tri-O -benzyl-α-d -glucopyranose (1b ) in 30% and 54% yields, and of 6-O -acetyl-2,3,4-tri-O -benzyl-1-C -n -butyl-d -glucopyranose (11c ) and 2,3,4-tri-O -benzyl-1-C -n -butyl-α-d -glucopyranose (1c ) in 64% and 12% yields, respectively. The reactions using PhMgCl and PhCH2 MgCl afforded 6-O -acetyl-2,3,4-tri-O -benzyl-1-C -phenyl-α-d -glucopyranose (11d ) and 6-O -acetyl-1-C -benzyl-2,3,4-tri-O -benzyl-α-d -glucopyranose (11e ) in 89% and 82% yields, respectively, with almost no production of the deacetylated
compounds. It seemed that these bulky organometallic reagents were apt to produce
the nucleophilic attack on the conformationally fixed carbonyl group at C-1 of 10 rather than on the acetyl group at C-6. The treatment of 11b -e using NaOMe in MeOH quantitatively afforded 1b-e . 2,3,4-Tri-O -benzyl-1-C -methyl-α-d -mannopyranose (6a ) was similarly prepared in 82% yield from 6-O -acetyl-2,3,4-tri-O -benzyl-d -manno-1,5-lactone(13 ). Preparation of 9 and 12 was reported in the following literature. See:
<A NAME="RU27005ST-9A">9a </A>
Koto S.
Morishima N.
Takenaka K.
Kanemitsu K.
Shimoura N.
Kase M.
Kojiro S.
Nakamura T.
Kawase T.
Zen S.
Bull. Chem. Soc. Jpn.
1989,
62:
3549
<A NAME="RU27005ST-9B">9b </A>
Murakata C.
Ogawa T.
Carbohydr. Res.
1992,
235:
95
<A NAME="RU27005ST-9C">9c </A> The oxidation of 9 using pyridinium chlorochromate also gave 10 in a moderate yield. See:
Horito S.
Asano K.
Umemura K.
Hashimoto H.
Yoshimura J.
Carbohydr. Res.
1983,
121:
175
<A NAME="RU27005ST-10A">10a </A>
Boon G.-J.
Isles S.
Setala P.
Synlett
1995,
755
<A NAME="RU27005ST-10B">10b </A>
Bernlind C.
Oscarson S.
J. Org. Chem.
1998,
63:
7780
<A NAME="RU27005ST-11">11 </A>
Grindley TB.
Glycoscience: Chemistry and Chemical Biology I
Fraser-Reid B.
Tatsuta K.
Thieme J.
Springer;
Berlin:
2001.
p.4-51
<A NAME="RU27005ST-12">12 </A>
Typical Intramolecular Glycosidation Procedure (Table 1, Entry 4).
A typical glycosidation procedure is as follows. To a stirred solution of TfOH (0.48
µL, 0.0054 mmol) was added 1a (50 mg, 0.11 mmol) in MeCN (2 mL) at 0 °C in the presence of dry MgSO4 (ca. 100 mg) in an Ar atmosphere. The resulting mixture was stirred for 2 h. The
reaction was then quenched by the addition of a sat. NaHCO3 solution (5 mL). The reaction mixture was extracted with EtOAc, and the organic layer
was washed with H2 O and a sat. NaCl solution. After the organic layer was dried over Na2 SO4 , the solvent was evaporated under reduced pressure. The crude product was purified
by preparative silica gel TLC (EtOAc-hexane = 1:2) to give 2a (45 mg, 93%). Compound 2a : [α]D
23 -47.7 (c 1.54, CHCl3 ). 1 H NMR (600 MHz, CDCl3 ): δ = 1.49 (3 H, s, H-2′), 3.23 (1 H, s, H-4), 3.31 (1 H, s, H-2), 3.59 (1 H, s,
H-3), 3.75 (1 H, dd, J = 6.2 Hz, J = 6.9 Hz, H-7a), 3.96 (1 H, d, J = 6.9 Hz, H-7b), 4.34-4.39 (3 H, m, OCH
2 Ph and OCH aHbPh), 4.53 (1 H, m, OCHaH bPh), 4.53 (1 H, d, J = 6.2 Hz, H-1), 4.58-4.61 (2 H, m, OCH
2
Ph). 13 C NMR (150 MHz, CDCl3 ): δ = 21.0 (C-2′), 65.5 (C-7), 71.0 (OC H2 Ph), 71.2 (OC H2 Ph), 72.3 (OC H2 Ph), 74.5 (C-2), 75.2 (C-3), 75.7 (C-1), 77.3 (C-4), 107.0 (C-5). HRMS (ESI): m/z calcd for C28 H30 O5 Na+ : 469.1991; found: 469.2032. Compound 2b : [α]D
23 +7.6 (c 4.57, CHCl3 ). 1 H NMR (600 MHz, CDCl3 ): δ = 2.56 (1 H, dd, J = 7.6 Hz, J = 14.4 Hz, H-2′a), 2.64 (1 H,dd, J = 7.6 Hz, J = 14.4 Hz, H-2′b), 3.24 (1 H, s, H-4), 3.26 (1 H, s, H-2), 3.54 (1 H, s, H-3), 3.66
(1 H, dd, J = 6.2 Hz, J = 6.9 Hz, H-7a), 3.94 (1 H, d, J = 6.9 Hz, H-7b), 4.29-4.34 (3 H, m, OCH
2 Ph and OCH aHbPh), 4.41-4.52 (3 H, m, OCH
2 Ph and OCHaH bPh), 4.56 (1 H, d, J = 5.5 Hz, H-1), 5.03-5.05 (2 H, m, H-4′), 5.77 (1 H, m, H-3′). 13 C NMR (150 MHz, CDCl3 ): δ = 38.1 (C-2′), 65.7 (C-7), 70.9 (OC H2 Ph), 71.5 (OC H2 Ph), 72.2 (OC H2 Ph), 74.6 (C-2), 74.9 (C-3), 75.5 (C-1), 76.2 (C-4), 107.2 (C-5), 118.4 (C-4′), 132.0
(C-3′). HRMS (ESI): m/z calcd for C30 H32 O5 Na+ : 495.2147; found: 495.2195. Compound 2c : [α]D
23 -36.7 (c 1.08, CHCl3 ). 1 H NMR (600 MHz, CDCl3 ): δ = 0.84 (3 H, t, J = 6.9 Hz, H-5′), 1.16 (1 H, m, H-3′a), 1.25 (2 H, m, H-4′), 1.36 (1 H, m, H-3′b),
1.75 (1 H, m, H-2′a), 1.90 (1 H, ddd, J = 13.1 Hz, J = 3.4 Hz, J = 13.7 Hz, H-2′b), 3.25 (1 H, s, H-4), 3.31 (1 H, s, H-2), 3.60 (1 H, s, H-3), 3.70
(1 H, dd, J = 6.9 Hz, J = 6.2 Hz, H-7a), 3.98 (1 H, d, J = 6.9 Hz, H-7b), 4.32-4.40 (3 H, m, OCH
2 Ph and OCH aHbPh), 4.49-4.57 (3 H, m, OCH
2 Ph and OCHaH bPh), 4.59 (1 H, d, J = 6.2 Hz, H-1). 13 C NMR (150 MHz, CDCl3 ): δ = 14.0 (C-5′), 22.9 (C-4′), 24.1 (C-3′), 32.9 (C-2′), 65.6 (C-7), 70.9 (OC H2 Ph), 71.4 (OC H2 Ph), 72.0 (OC H2 Ph), 74.7 (C-2), 75.0 (C-3), 75.4 (C-1), 76.2 (C-4), 107.9 (C-5). HRMS (ESI): m/z calcd for C31 H36 O5 Na+ : 511.2460; found: 511.2510. Compound 2d : [α]D
23 -3.5 (c 2.71, CHCl3 ). 1 H NMR (600 MHz, CDCl3 ): δ = 3.39 (1 H, s, H-4), 3.50 (1 H, s, H-2), 3.68 (1 H, s, H-3), 3.81 (1 H, dd,
J = 5.5 Hz, J = 6.2 Hz, H-7a), 4.03 (2 H, dd, J = 12.4 Hz, J = 3.4 Hz, OCH
2 Ph), 4.07 (1 H, d, J = 6.9 Hz, H-7b), 4.34 (2 H, dd, J = 12.4 Hz, J = 3.4 Hz, OCH
2 Ph), 4.56 (1 H, d, J = 13.1 Hz, OCH aHbPh), 4.67 (1 H, d, J = 13.1 Hz, OCHaH bPh), 4.79 (1 H, d, J = 6.2 Hz, H-1). 13 C NMR (150 MHz, CDCl3 ): δ = 65.6 (C-7), 71.0 (OC H2 Ph), 71.6 (OC H2 Ph), 72.2 (OC H2 Ph), 74.6 (C-2), 76.2 (C-3), 76.3 (C-1), 77.6 (C-4), 106.9 (C-5). HRMS (ESI): m/z calcd for C33 H32 O5 Na+ : 531.2147; found: 531.2196. Compound 5d : [α]D
23 -74.5 (c 0.47, CHCl3 ). 1 H NMR (600 MHz, CDCl3 ): δ = 3.55 (1 H, s, H-2), 3.77 (1 H, d, J = 5.5 Hz, H-4), 3.86 (1 H, d, J = 5.5 Hz, H-3), 3.94 (1 H, dd, J = 8.2 Hz, J = 5.5 Hz, H-7a), 3.95 (1 H, d, J = 11.7 Hz, OCH aHbPh), 4.04 (1 H, d, J = 11.7 Hz, OCHaH bPh), 4.42 (1 H, d, J = 8.2 Hz, H-7b), 4.44 (1 H, d, J = 12.4 Hz, OCH a′Hb′Ph), 4.45 (1 H, d, J = 12.4 Hz, OCHa′H b′Ph), 4.53 (1 H, d, J = 12.4 Hz, OCH a′′Hb′′Ph), 4.63 (1 H, d, J = 6.2 Hz, H-1), 4.66 (1 H, d, J = 12.4 Hz, OCHa′′H b′′Ph). 13 C NMR (150 MHz, CDCl3 ): δ = 66.1 (C-7), 71.2 (OC H2 Ph), 72.4 (OC H2 Ph), 73.3 (OC H2 Ph), 75.0 (C-3), 75.4 (C-1), 76.9 (C-2), 77.7 (C-4), 107.6 (C-5). HRMS (ESI): m/z calcd for C33 H32 O5 Na+ : 531.2147; found: 531.2178. Compound 2e : [α]D
23 -35.1 (c 2.32, CHCl3 ). 1 H NMR (600 MHz, CDCl3 ): δ = 2.97 (1 H, d, J = 13.4 Hz, H-2′a), 3.23 (1 H, s, H-4), 3.29 (1 H, s, H-2), 3.34 (1 H, d, J = 13.7 Hz, H-2′b), 3.45 (1 H, dd, J = 6.9 Hz, J = 6.2 Hz, H-7a), 3.60 (1 H, s, H-3), 3.91 (1 H, d, J = 6.9 Hz, H-7b), 4.33 (3 H, m, OCH
2 Ph and OCH aHbPh), 4.43 (1 H, d, J = 12.4 Hz, OCH a′Hb′Ph), 4.50 (1 H, d, J = 12.4 Hz, OCHaH bPh), 4.53 (1 H, d, J = 5.5 Hz, H-1), 4.56 (1 H, d, J = 13.0 Hz, OCHa′H b′Ph). 13 C NMR (150 MHz, CDCl3 ): δ = 39.5 (C-2′), 65.7 (C-7), 70.9 (OC H2 Ph), 71.5 (OC H2 Ph), 72.0 (OC H2 Ph), 74.5 (C-2), 74.9 (C-3), 75.3 (C-1), 76.8 (C-4), 107.2 (C-5). HRMS (ESI): m/z calcd for C34 H34 O5 Na+ : 545.2304; found: 545.2354. Compound 5e : [α]D
23 -19.3 (c 1.97, CHCl3 ). 1 H NMR (600 MHz, CDCl3 ): δ = 2.95 (1 H, d, J = 14.4 Hz, H-2′a), 3.43 (1 H, d, J = 14.4 Hz, H-2′b), 3.48 (1 H, d, J = 1.4 Hz, H-2), 3.52 (1 H, dd, J = 6.9 Hz, J = 5.5 Hz, H-7a), 3.56 (1 H, d, J = 4.8 Hz, H-4), 3.81 (1 H, dd, J = 5.5 Hz, J = 1.4 Hz, H-3), 4.12 (1 H, d, J = 6.9 Hz, H-7b), 4.26 (1 H, d, J = 11.7 Hz, OCH aHbPh), 4.40 (1 H, d, J = 5.5 Hz, H-1), 4.43-4.51 (5 H, m, OCH
2 Ph × 2 and OCHaH bPh). 13 C NMR (150 MHz, CDCl3 ): δ = 39.1 (C-2′) 65.9 (C-7), 71.2 (OC H2 Ph), 71.3 (OC H2 Ph), 73.0 (OC H2 Ph), 74.2 (C-3), 75.1 (C-1), 76.2 (C-2), 76.5 (C-4), 107.8 (C-5). HRMS (ESI): m/z calcd for C34 H34 O5 Na+ : 545.2304; found: 545.2352. Compound 7a : [α]D
23 +12.1 (c 2.4, CHCl3 ). 1 H NMR (600 MHz, CDCl3 ): δ = 1.52 (3 H, s, H-2′), 3.48 (1 H, s, H-2), 3.53 (1 H, d, J = 5.5 Hz, H-4), 3.78-3.81 (2 H, m, H-3 and H-7a), 4.18 (1 H, d, J = 7.6 Hz, H-7b), 4.38 (1 H, d, J = 12.4 Hz, OCH aHbPh), 4.44-4.50 (4 H, m, H-1 and OCH
2 Ph and OCHaH bPh), 4.53-4.56 (2 H, m, OCH
2 Ph). 13 C NMR (150 MHz, CDCl3 ): δ = 20.9 (C-2′), 65.7 (C-7), 71.2 (OC H2 Ph), 71.7 (OC H2 Ph), 73.1 (OC H2 Ph), 74.1 (C-3), 75.1 (C-1), 76.3 (C-2), 77.1 (C-4), 107.1 (C-5). HRMS (ESI): m/z calcd for C28 H30 O5 Na+ : 469.1991; found: 469.2030.
Scheme 3