Subscribe to RSS
DOI: 10.1055/s-2005-918937
Multiple Stille Cross-Coupling Reactions with Tribenzotriquinacenes and Fenestrindanes - En Route to Extended Convex/Concave and Saddle-Shaped Carbon Frameworks
Publication History
Publication Date:
12 October 2005 (online)

Abstract
Hexabromotribenzotriquinacenes and octabromotetrabenzo[5.5.5.5]fenestranes undergo highly efficient multiple Stille cross-coupling reactions, yielding building blocks for extended convex/concave and saddle-shaped molecular scaffolds, respectively.
Key words
triquinacenes - fenestranes - fenestrindanes - Stille cross-coupling - multiple C-C coupling
-
1a
Kuck D.Neumann E.Schuster A. Chem. Ber. 1994, 127: 151 -
1b
Kuck D.Lindenthal T.Schuster A. Chem. Ber. 1992, 125: 1449 -
1c
Kuck D.Schuster A.Ohlhorst B.Sinnwell V.de Meijere A. Angew. Chem., Int. Ed. Engl. 1989, 28: 595 -
1d See also:
Kuck D. Angew. Chem., Int. Ed. Engl. 1984, 23: 508 -
2a
Kuck D.Bögge H. J. Am. Chem. Soc. 1986, 108: 8107 -
2b
Kuck D. Chem. Ber. 1994, 127: 409 -
3a
Woodward RB.Fukunaga T.Kelly RC. J. Am. Chem. Soc. 1964, 86: 3162 -
3b
Luyten M.Keese R. Angew. Chem., Int. Ed. Engl. 1984, 23: 390 -
3c
Brunvoll J.Guidetti-Grept R.Hargittai I.Keese R. Helv. Chim. Acta 1993, 76: 2838 -
3d
Thommen M.Keese R. Synlett 1997, 231 -
4a
Desphande MN.Jawdosiuk M.Kubiak G.Venkatachalam M.Weiss U.Cook JM. J. Am. Chem. Soc. 1985, 107: 4786 -
4b
Gupta AK.Fu X.Snyder JP.Cook JM. Tetrahedron 1991, 47: 3665 -
5a
Kuck D. Synlett 1996, 949 -
5b
Kuck D. Top. Curr. Chem. 1998, 196: 167 -
5c
Kuck D. Liebigs Ann./Recl. 1997, 1043 -
5d
Kuck D. In Advances in Theoretically Interesting Molecules Vol. 4:Thummel RP. JAI Press; Stanford, CT: 1998. p.81-155 - 6
Kuck D.Schuster A.Krause RA.Tellenbröker J.Exner CP.Penk M.Bögge H.Müller A. Tetrahedron 2001, 57: 3587 - 7
Harig M.Neumann B.Stammler HG.Kuck D. Eur. J. Org. Chem. 2004, 2381 -
8a
Gund P.Gund TM. J. Am. Chem. Soc. 1981, 103: 4458 -
8b
Trost BM. Chem. Soc. Rev. 1982, 11: 141 -
8c
Paquette LA.Doherty AM. Polyquinane Chemistry, Synthesis and Reactions Springer; Berlin: 1987. -
9a
Hoffmann R.Alder RW.Charles F.Wilcox J. J. Am. Chem. Soc. 1970, 92: 4992 -
9b
Hoffmann R. Pure Appl. Chem. 1971, 28: 181 -
9c
Luef W.Keese R. Advances in Strain in Organic Chemistry Vol. 3:Halton B. JAI Press; Greenwich, CT: 1993. p.229-267 - For recent developments in heterocyclic centropolyquinane chemistry, see:
-
10a
Wender PA.de Long MA.Wireko FC. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1997, 53: 954 -
10b
Son SU.Park KH.Chung YK. J. Am. Chem. Soc. 2002, 124: 6838 -
10c
Denmark SE.Kramps LA.Montgomery JI. Angew. Chem. Int. Ed. 2002, 41: 4122 -
10d
Mascal M.Bertran JC. J. Am. Chem. Soc. 2005, 127: 1352 -
11a
Tellenbröker J.Kuck D. Angew. Chem. Int. Ed. 1999, 38: 919 -
11b
Tellenbröker J.Kuck D. Eur. J. Org. Chem. 2001, 1483 -
11c
Tellenbröker J.Barth D.Neumann B.Stammler HG.Kuck D. Org. Biomol. Chem. 2005, 3: 570 -
11d
Cao XP.Barth D.Kuck D. Eur. J. Org. Chem. 2005, 3482 -
12a
Haag R.Ohlhorst B.Noltemeyer M.Fleischer R.Stalke D.Schuster A.Kuck D.de Meijere A. J. Am. Chem. Soc. 1995, 117: 10474 -
12b
Kuck D.Schuster A.Paisdor B.Gestmann D. J. Chem. Soc., Perkin. Trans. 1 1995, 721 -
12c
Kuck D.Schuster A.Fusco C.Fiorentino M.Curci R. J. Am. Chem. Soc. 1994, 116: 2375 -
12d
Kuck D.Schuster A.Gestmann D.Posteher F.Pritzkow H. Chem.-Eur. J. 1996, 2: 58 -
13a
Lehn M. Supramolecular Chemistry: Concepts and Perspectives VCH; Weinheim: 1995. -
13b
Dodziuk H. Introduction to Supramolecular Chemistry Kluwer Academic Publishers; Dordrecht: 2002. -
13c
Schalley CA. Mass Spectrom. Rev. 2001, 20: 253 -
14a
Cram DJ. Nature (London) 1992, 356: 29 -
14b
MacGillivray LR.Atwood JL. Angew. Chem. Int. Ed. 1999, 38: 1018 -
14c
Jasat A.Sherman JC. Chem. Rev. 1999, 99: 931 - 15
Issberger J.Moors R.Vögtle F. Angew. Chem., Int. Ed. Engl. 1994, 33: 2413 -
16a
Dullaghan CA.Carpenter GB.Sweigart DA.Kuck D.Fusco C.Curci R. Organometallics 2000, 19: 2233 -
16b
Ceccon A.Gambaro A.Manoli F.Venzo A.Kuck D.Bitterwolf TE.Ganis P.Valle G. J. Chem. Soc., Perkin Trans. 2 1991, 233 -
17a
Alonso DA.Nájera C.Pacheco MC. J. Org. Chem. 2002, 67: 5588 -
17b
Alonso DA.Nájera C.Pacheco MC. Org. Lett. 2000, 2: 1823 -
18a
Milstein D.Stille JK. J. Am. Chem. Soc. 1978, 100: 3636 -
18b
Sheffy FK.Godschalx JP.Stille JK. J. Am. Chem. Soc. 1984, 106: 4833 -
18c
Stille JK. Angew. Chem., Int. Ed. Engl. 1986, 25: 508 -
19a
Littke AF.Fu GC. Angew. Chem. Int. Ed. 2002, 41: 4176 -
19b
Espinet P.Echavarren AM. Angew. Chem. Int. Ed. 2004, 43: 4704 -
20a
Han XJ.Stoltz BM.Corey EJ. J. Am. Chem. Soc. 1999, 121: 7600 -
20b
Domínguez B.Pazos Y.de Lera AR. J. Org. Chem. 2000, 65: 5917 -
20c
Littke AF.Schwarz L.Fu GC. J. Am. Chem. Soc. 2002, 124: 6343 -
20d
García-Cuadrado D.Cuadro AM.Alvarez-Builla J.Vaquero JJ. Synlett 2002, 1904 -
20e
Nicolaou KC.Fylaktakidou KC.Monenschein H.Li Y.Weyershausen B.Mitchell HJ.Wei HX.Guntupalli P.Hepworth D.Sugita K. J. Am. Chem. Soc. 2003, 125: 15433 -
20f
Kim WS.Kim HJ.Cho CG. J. Am. Chem. Soc. 2003, 125: 14288 -
20g
Sorg A.Siegel K.Brückner R. Synlett 2004, 321 -
20h
Vaz B.Alvarez R.Brückner R.de Lera AR. Org. Lett. 2005, 7: 545 -
20i
Gajare AS.Jensen RS.Toyota K.Yoshifuji M.Ozawa F. Synlett 2005, 144 -
21a
Cook MJ.Heeney MJ. Chem. Eur. J. 2000, 6: 3958 -
21b
Feng J.Szeimies G. Tetrahedron 2000, 56: 4249 -
21c
Muto T.Temma T.Kimura M.Hanabusa K.Shirai H. J. Org. Chem. 2001, 66: 6109 -
21d
Ito S.Okujima T.Morita N. J. Chem. Soc., Perkin Trans. 1 2002, 1896 - 25
Scott WJ.Stille JK. J. Am. Chem. Soc. 1986, 108: 3033 -
26a
Martínez AG.Barcina JO.de Fresno Cerezo A.Subramanian LR. Synlett 1994, 1047 -
26b
Fouquet E.Pereyre M.Rodriguez AL. J. Org. Chem. 1997, 62: 5242 -
26c
Mee SPH.Lee V.Baldwin JE. Angew. Chem. Int. Ed. 2004, 43: 1132 -
27a
Nicolaou KC.Sorensen EJ. Classics in Total Synthesis Wiley-VCH; Weinheim: 1996. -
27b
Nicolaou KC.Snyder SA. Classics in Total Synthesis II Wiley-VCH; Weinheim: 2003. - 35
Kuck D.Schuster A.Krause RA. J. Org. Chem. 1991, 56: 3472
References
The crystallographic data for 3 have been deposited at CCDC under the registry number 271522. They can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk]. The unit cell parameters and the X-ray diffraction intensities were recorded on a Nonius Kappa CCD area detector. The structure was solved by the direct method (SHELXS). Empirical formula: C26H18Br6 + 2 C4H8O. Formula weight: 954.07. T = 100 (2) K. Wavelength: 0.71073 Å. Crystal system: monoclinic, P21/c. Unit cell dimensions: a = 13.1750 (17) Å, b = 7.4460 (8) Å, c = 34.504 (4) Å, β = 96.721 (11)°; V = 3361.6 (7) Å3; Z = 4, ρcaldc = 1.885 g/cm3. Absorption coefficient: 7.196 mm-1, F(000): 1856. Crystal size: 0.30 ¥ 0.11 ¥ 0.05 mm3. Theta range for data collection: 3.11-27.50°. Index ranges: -17 ≤ h ≤ 17, -9 ≤ k ≤ 9, -43 ≤ l ≤ 44. Reflections collected/unique: 45553/7718 [R(int) = 0.0589]. Completeness to Θ = 27.50, 99.9%. Absorption correction multi-scan: Max. and min. transmission 1.000000 and 0.475662. Refinement method: Full-matrix least-squares on F2. Data/restraints/parameters: 7718/0/383. Goodness-of-fit on F2: 1.048. Final R indices [I>2σ(I)] R1 = 0.0340, wR2 = 0.0623 [6043]. R indices (all data) R1 = 0.0546, wR2 = 0.0678. Largest diff. peak and hole: 1.049 and -0.656 e Å-3. Remark: largest diff. peak near Br(6) (1.27 Å).
23Cyranski, M.; Kuck, D. unpublished results.
24Compound 6: 1H NMR (300 MHz, CDCl3): δ = 1.32 (s, 3 H), 1.62 (s, 9 H), 3.31 (d, J = 6.3 Hz, 12 H, CH2), 5.01 (dd, J = 18.6, 1.5 Hz, 6 H, =CH2), 5.03 (dd, J = 9.6, 1.5 Hz, 6 H, =CH2), 5.84-5.89 (m, 6 H, CH=), 7.10 (s, 6 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 16.07 (p), 25.81 (p), 37.16 (s), 62.24 (q), 70.33 (q), 115.74 (s), 123.48 (t), 137.18 (q), 137.18 (t), 147.14 (q). HRMS (ESI): m/z calcd for C44H52N [M + NH4]+: 594.4094; found: 594.4092.
28
General Experimental Procedure.
An oven-dried flask equipped with a magnetic stirring bar was charged under argon with the aryl bromide (0.05 mmol) in THF (20 mL, 40 mL for compound 4). Then, Pd(PPh3)4 (6 mg, 0.005 mmol) and CsF (0.72 mmol for 3, 0.96 mmol for 4) were added, and then the organotin reagent (0.36 mmol for 3, 0.48 mmol for 4) was added via a syringe. The flask was evacuated and refilled with argon five times. The mixture was stirred at 45 °C for about 10 h (16 h for the preparation of compound 7) and quenched with H2O. After vigorous shaking, the mixture was filtered and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na2SO4, concentrated, and purified by column chromatography.
Compound 7: 1H NMR (300 MHz, CDCl3): δ = 1.27 (s, 3 H), 1.60 (s, 9 H), 5.16 (dd, J = 11.4, 1.8 Hz, 6 H, =CH2), 5.41 (dd, J = 17.0, 1.8 Hz, 6 H, =CH2), 6.81 (dd, J = 17.0, 11.4 Hz, 6 H, CH=), 7.23 (s, 6 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 16.08 (p), 25.79 (p), 62.41 (q), 70.90 (q), 115.87 (s), 120.65 (t), 135.33 (t), 136.27 (q), 148.61 (q). HRMS (ESI): m/z calcd for C38H37 [M + H]+: 493.2890; found: 493.2899.
30Compound 8: 1H NMR (400 MHz, CDCl3): δ = 1.39 (s, 3 H), 1.74 (s, 9 H), 5.90 (d, J = 3.2 Hz, 6 H), 6.38-6.40 (m, 6 H), 7.43 (dd, J = 3.2, 0.8 Hz, 6 H), 7.63 (s, 6 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 16.05 (p), 25.74 (p), 62.61 (q), 70.99 (q), 107.97 (t), 111.30 (t), 123.56 (t), 129.30 (q), 141.58 (t), 148.53 (q), 153.06 (q). HRMS (ESI): m/z calcd for C50H40O6N [M + NH4]+: 750.2850; found: 750.2840.
31Compound 9: 1H NMR (400 MHz, CDCl3): δ = 1.46 (s, 3 H), 1.78 (s, 9 H), 6.79 (dd, J = 3.6, 1.2 Hz, 6 H), 6.92 (dd, J = 4.8, 3.6 Hz, 6 H), 7.22 (dd, J = 4.8, 0.8 Hz, 6 H), 7.50 (s, 6 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 16.17 (p), 25.75 (p), 62.62 (q), 71.07 (q), 125.56 (t), 125.77 (t), 126.78 (t), 127.02 (t), 134.07 (q), 142.83 (q), 148.40 (q). HRMS (DEI): m/z calcd for C50H36S6 [M+]: 828.1141; found: 828.1133.
32Compound 10: 1H NMR (300 MHz, CDCl3): δ = 1.23 (s, 12 H), 3.36 (d, J = 6.0 Hz, 8 H, CH2), 3.46 (d, J = 5.7 Hz, 8 H, CH2), 4.98 (d, J = 17.1 Hz, 8 H, =CH2), 5.06 (d, J = 10.8 Hz, 8 H, =CH2), 5.90-6.07 (m, 8 H, CH=), 6.95 (s, 4 H, ArH), 7.22 (s, 4 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 28.48 (p), 37.19 (s), 37.34 (s), 58.61 (q), 89.21 (q), 115.51 (s), 122.53 (t), 124.65 (t), 136.50 (q), 136.94 (q), 137.43 (t), 137.60 (t), 145.29 (q), 150.20 (q). HRMS (ESI): m/z calcd for C57H64N [M + NH4]+: 762.5033; found: 762.5022.
33Compound 12: 1H NMR (400 MHz, CDCl3): δ = 1.47 (s, 12 H), 6.00 (d, J = 3.6 Hz, 4 H), 6.08 (d, J = 3.2 Hz, 4 H), 6.42-6.45 (m, 8 H), 7.45 (d, J = 1.2 Hz, 4 H), 7.47 (s, 4 H), 7.48-7.49 (m, 4 H), 7.82 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 28.17 (p), 58.96 (q), 89.19 (q), 108.19 (t), 111.38 (t), 111.53 (t), 122.63 (t), 124.09 (t), 129.03 (q), 141.68 (q), 141.68 (t), 146.45 (q), 151.28 (q), 153.10 (q). HRMS (ESI): m/z calcd for C65H45O8 [M + H]+: 953.3109; found: 953.3116.
34Compound 13: 1H NMR (400 MHz, CDCl3): δ = 1.52 (s, 12 H), 6.92 (dd, J = 3.6, 1.2 Hz, 4 H), 6.94-6.97 (m, 12 H), 7.26 (dd, J = 6.4, 1.2 Hz, 8 H), 7.37 (s, 4 H), 7.63 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 28.58 (p), 59.01 (q), 89.38 (q), 124.32 (t), 125.90 (t), 126.22 (t), 126.86 (t), 127.20 (t), 133.47 (q), 133.69 (q), 142.94 (q), 143.07 (q), 146.28 (q), 151.17 (q). Various attempts to characterize 13 by mass spectrometry, including DEI, APCI and MALDI as ionization techniques, were unsuccessful.