Synlett 2005(17): 2615-2618  
DOI: 10.1055/s-2005-917106
LETTER
© Georg Thieme Verlag Stuttgart · New York

Total Synthesis of Sperabillin A and C

Lars Allmendinger, Gerd Bauschke, Franz F. Paintner*
Department Pharmazie - Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus C, 81377 München, Germany
Fax: +49(89)218077247; e-Mail: franz.paintner@cup.uni-muenchen.de;
Further Information

Publication History

Received 22 August 2005
Publication Date:
05 October 2005 (online)

Abstract

The first total synthesis of sperabillin A and an improved total synthesis of sperabillin C have been achieved in 11 steps from N-Boc-O-methyl-l-tyrosine. The stereoselective pathway to the core (3R,5R)-3,6-diamino-5-hydroxyhexanoic acid involves an Arndt-Eistert homologation, an asymmetric Henry reaction and a ruthenium tetroxide-catalyzed oxidative degradation of a benzene ring as key steps.

    References

  • 1 Hamada M. Takeuchi T. Kondo S. Ikeda Y. Naganawa H. Maeda K. Okami Y. Umezawa H. J. Antibiot.  1970,  23:  170 
  • 2a Harada S, and Ono H. inventors; Eur. Pat. Appl.;  EP206068. 
  • 2b Katayama N. Nozaki Y. Tsubotani S. Kondo M. Harada S. Ono H. J. Antibiot.  1992,  45:  10 
  • 2c Hida T. Tsubotani S. Funabashi Y. Ono H. Harada S. Bull. Chem. Soc. Jpn.  1993,  66:  863 
  • For some recent examples see:
  • 3a Raju B. Mortell K. Anandan S. O’Dowd H. Gao H. Gomez M. Hackbarth C. Wu C. Wang W. Yuan Z. White R. Trias J. Patel DV. Bioorg. Med. Chem. Lett.  2003,  13:  2413 
  • 3b Jain RP. Williams RM. J. Org. Chem.  2002,  67:  6361 
  • 3c Davies SG. Ichihara O. Tetrahedron: Asymmetry  1996,  7:  1919 
  • 4 Hashiguchi S. Kawada A. Natsugari H. Synthesis  1992,  403 
  • Highly efficient asymmetric total syntheses of sperabillin B (3b) and D (3d) have been reported recently, see:
  • 5a Davies SG. Kelly RJ. Price Mortimer AJ. Chem. Commun.  2003,  2132 
  • 5b Davies SG. Haggitt JR. Ichihara O. Kelly RJ. Leech MA. Price Mortimer AJ. Roberts PM. Smith AD. Org. Biomol. Chem.  2004,  2:  2630 
  • 5c For a previous chiral-pool synthesis of sperabillin D (3d) see: Hashiguchi S. Kawada A. Natsugari H. J. Chem. Soc., Perkin Trans. 1  1991,  2435 
  • 6 Chen HG. Tustin JM. Wuts PGM. Sawyer TK. Smith CW. Int. J. Pept. Protein Res.  1995,  45:  1 
  • 7 Jackson RFW. Dexter CS. J. Org. Chem.  1999,  64:  7579 
  • 8a Ohtake N. Okamoto O. Mitomo R. Kato Y. Yamamoto K. Haga Y. Fukatsu H. Nakagawa S. J. Antibiot.  1997,  50:  598 
  • 8b Rudolph J. Hanning F. Theis H. Wischnat R. Org. Lett.  2001,  3:  3153 
  • 8c Paintner FF. Allmendinger L. Bauschke G. Klemann P. Org. Lett.  2005,  7:  1423 
  • 9 Evans DA. Seidel D. Rueping M. Lam HW. Shaw JT. Downey CW. J. Am. Chem. Soc.  2003,  125:  12692 
  • For recent examples see:
  • 11a Emmer G. Grassberger MA. Meingassner JG. Schulz G. Schaude M. J. Med. Chem.  1994,  37:  1908 
  • 11b Matsuura F. Hamada Y. Shioiri T. Tetrahedron  1994,  50:  9457 
  • 11c Georgiadis D. Matziari M. Vassiliou S. Dive V. Yiotakis A. Tetrahedron  1999,  55:  14635 
  • 11d Walker JR. Curley RW. Tetrahedron  2001,  57:  6695 
  • 11e Moutevelis-Minakakis P. Sinanoglou C. Loukas V. Kokotos G. Synthesis  2005,  933 
  • 11f For a recent review covering the oxidative degradation of benzene rings see: Mander LN. Williams CM. Tetrahedron  2003,  59:  1105 
  • 12a Yoshifuji S. Tanaka K. Nitta Y. Chem. Pharm. Bull.  1985,  33:  1749 
  • 12b Tanaka K. Yoshifuji S. Nitta Y. Chem. Pharm. Bull.  1988,  36:  3125 
  • 13a

    In addition to product 10, its N-formyl derivative 3-tert-butoxycarbonylformylamino-5-tert-butyldimethylsilyloxy-6-nitrohexanoic acid (5% yield) and trace amounts (<1%) of 4-tert-butoxycarbonylamino-2-tert-butyldimethyl-silyloxyhexanedioic acid, the latter indicating a Nef-type reaction at the nitromethyl group, were obtained. Application of the reaction conditions [2.2 mol% RuCl, NaIO4 (18 equiv), CCl4-MeCN-H2O = 2:2:3, r.t.] previously developed by Sharpless and co-workers (see ref. 13b) gave the oxidation product 10 in a 41% yield together with 24% of the N-formyl derivative mentioned above.

  • 13b Carlsen PHJ. Katsuki T. Martin VS. Sharpless KB. J. Org. Chem.  1981,  46:  3936 
  • 16 Rossi R. Carpita A. Quirici MG. Gaudenti ML. Tetrahedron  1982,  38:  631 
  • 18 Smith AB. Pitram SM. Boldi AM. Gaunt MJ. Sfouggatakis C. Moser WH. J. Am. Chem. Soc.  2003,  125:  14435 
  • 19a Barker PL. Gendler PL. Rapoport H. J. Org. Chem.  1981,  46:  2455 
  • 19b Josse O. Labar D. Marchand-Brynaert J. Synthesis  1999,  404 
  • 20 For a previous synthesis of 3-aminopropionamidine, starting from 3-aminopropionitril, see: Hilgetag G. Paul H. Günther J. Witt M. Chem. Ber.  1964,  97:  704 
  • 21 Lee HK. Ten LN. Pak CS. Bull. Korean Chem. Soc.  1998,  19:  1148 
10

The reaction of chiral aldehyde 6 with nitromethane in the presence of catalyst (+)-11 represents the matched case of double diastereoselection, since application of the enantiomeric catalyst (-)-11 gave the corresponding epimer of 5 with slightly lower stereoselectivity (91% de).

14

In the absence of sodium hydrogen carbonate a somewhat lower yield (56%) of product 10 was obtained.

15

Spectroscopic data of compound 4: [α]D 20 +20.8 (c 0.95 in CH2Cl2). 1H NMR (500 MHz, MeOH-d 4): δ = 0.13 (3 H, s), 0.15 (3 H, s), 0.92 (9 H, s), 1.43 (9 H, sbr), 1.78 (2 H, m), 2.31 (1 H, dd, J = 14.9, 7.7 Hz), 2.39 (1 H, dd, J = 14.9, 4.7 Hz), 3.01 (1 H, dd, J = 13.0, 4.1 Hz), 3.06 (1 H, dd, J = 13.0, 4.9 Hz), 3.85 (1 H, m), 4.18 (1 H, m), 4.09 (1 H, m). 13C NMR (100 MHz, MeOH-d 4): δ = -5.0, 18.4, 25.9, 28.3, 40.0, 43.5, 45.2, 45.8, 67.7, 79.6, 157.1, 178.6.

17

For an alternative stereoselective approach to (2E,4Z)-hexa-2,4-dienoic acid (14), see ref. 5b.

22

Spectroscopic data of sperabillin A (3a) [2c] : [α]D 23 -11.4 (c 0.4 in H2O), lit. [2c] [α]D 23 -11 (c 1.1 in H2O). 1H NMR (500 MHz, D2O): δ = 1.77 (1 H, ddd, J = 4.5, 10.0, 15.0 Hz), 1.87 (3 H, d, J = 7.2 Hz), 1.87 (1 H, m), 2.68 (2 H, t, J = 6.6 Hz), 2.74 (2 H, m), 3.33 (1 H, dd, J = 6.6, 14.0 Hz), 3.39 (1 H, dd, J = 4.5, 14.0 Hz), 3.55 (1 H, dt, J = 6.6, 14.0 Hz), 3.59 (1 H, dt, J = 6.7, 14.0 Hz), 3.86 (1 H, m), 4.00 (1 H, m), 6.02 (1 H, dq, J = 7.2, 10.8 Hz), 6.07 (1 H, d, J = 15.1 Hz), 6.23 (1 H, t, J = 10.8 Hz), 7.56 (1 H, dd, J = 11.8, 15.1 Hz). 13C NMR (100 MHz, D2O): δ = 16.0, 35.3, 38.0, 39.2, 39.8, 47.8, 49.1, 69.1, 125.1, 129.6, 139.4, 139.5, 171.7, 172.4, 174.7.

23

Spectroscopic data of sperabillin C (3c) [2c] : [α]D 23 -10.2 (c 0.4 in H2O), lit. [2c] [α]D 20 -11 (c 0.7 in H2O). 1H NMR (500 MHz, D2O): δ = 1.75 (1 H, ddd, J = 4.7, 10.0, 15.0 Hz), 1.83 (3 H, d, J = 5.5 Hz), 1.87 (1 H, ddd, J = 3.1, 7.5, 15.0 Hz), 2.67 (2 H, t, J = 6.7 Hz), 2.73 (2 H, d, J = 7.0 Hz), 3.30 (1 H, dd, J = 6.5, 14.0 Hz), 3.37 (1 H, dd, J = 4.7, 14.0 Hz), 3.57 (2 H, m), 3.85 (1 H, m), 3.98 (1 H, m), 5.97 (1 H, d, J = 15.5 Hz), 6.26 (2 H, m), 7.13 (1 H, dd, J = 9.7, 15.5 Hz). 13C NMR (100 MHz, D2O): δ = 20.7, 35.3, 38.0, 39.2, 39.8, 47.8, 49.1, 69.1, 122.9, 132.0, 143.2, 145.4, 171.6, 172.5, 174.7.