References
<A NAME="RU12705ST-1">1</A>
Schwindt MA.
Belmont DT.
Carlson M.
Franklin LC.
Hendrickson VS.
Karrick GL.
Poe RW.
Sobieray DM.
Van de Vusse J.
J. Org. Chem.
1996,
61:
9564
<A NAME="RU12705ST-2A">2a</A>
Pirrung MC.
Shuey SW.
J. Org. Chem.
1994,
59:
3890
<A NAME="RU12705ST-2B">2b</A>
Ohta S.
Yamashita M.
Arita K.
Kajiura T.
Kawasaki I.
Noda K.
Izumi M.
Chem. Pharm. Bull.
1995,
43:
1294
<A NAME="RU12705ST-3A">3a</A>
Lu Y.
Miet C.
Kunesch N.
Poisson JE.
Tetrahedron: Asymmetry
1993,
4:
893
<A NAME="RU12705ST-3B">3b</A>
Brown RFC.
Donohue AC.
Jackson WR.
McCarthy TD.
Tetrahedron
1994,
50:
13739
<A NAME="RU12705ST-3C">3c</A>
Zhao X.
Wan X.
Org. Prep. Proced. Int.
1995,
27:
513
<A NAME="RU12705ST-4A">4a</A>
Jackson WR.
Jacobs HA.
Matthews BR.
Jayatilake GS.
Watson KG.
Tetrahedron Lett.
1990,
31:
1447
<A NAME="RU12705ST-4B">4b</A>
Tellitu I.
Badía D.
Domínguez E.
García FJ.
Tetrahedron: Asymmetry
1994,
5:
1567
<A NAME="RU12705ST-4C">4c</A>
Effenberger F.
Eichhorn J.
Tetrahedron: Asymmetry
1997,
8:
469
<A NAME="RU12705ST-5">5</A>
Gaucher A.
Ollivier J.
Salaín J.
Synlett
1991,
151
<A NAME="RU12705ST-6">6</A>
Parisi MF.
Gattuso G.
Notti A.
Raymo FM.
J. Org. Chem.
1995,
60:
5174
<A NAME="RU12705ST-7">7</A>
Effenberger F.
Stelzer U.
Angew. Chem., Int. Ed. Engl.
1991,
30:
873
<A NAME="RU12705ST-8">8</A>
Stelzer U.
Effenberger F.
Tetrahedron: Asymmetry
1993,
4:
161
<A NAME="RU12705ST-9">9</A>
Syed J.
Furster S.
Effenberger F.
Tetrahedron: Asymmetry
1998,
9:
805
<A NAME="RU12705ST-10">10</A>
Monterde MI.
Brieva R.
Gotor V.
Tetrahedron: Asymmetry
2001,
12:
525
<A NAME="RU12705ST-11">11</A>
Monterde MI.
Nazabadioko S.
Rebolledo F.
Brieva R.
Gotor V.
Tetrahedron: Asymmetry
1999,
10:
3449
<A NAME="RU12705ST-12A">12a</A>
North M.
Synlett
1993,
807
<A NAME="RU12705ST-12B">12b</A>
Effenberger F.
Angew. Chem., Int. Ed. Engl.
1994,
33:
1555
<A NAME="RU12705ST-12C">12c</A>
Gregory RJH.
Chem. Rev.
1999,
99:
3649
<A NAME="RU12705ST-12D">12d</A>
North M.
Tetrahedron: Asymmetry
2003,
14:
147
<A NAME="RU12705ST-13A">13a</A>
Ryu DH.
Corey EJ.
J. Am. Chem. Soc.
2004,
126:
8106
<A NAME="RU12705ST-13B">13b</A>
Ryu DH.
Corey EJ.
J. Am. Chem. Soc.
2005,
127:
5384
<A NAME="RU12705ST-14A">14a</A>
Hamashima Y.
Sawada D.
Kanai M.
Shibasaki M.
J. Am. Chem. Soc.
1999,
121:
2641
<A NAME="RU12705ST-14B">14b</A>
Takamura M.
Funabashi K.
Kanai M.
Shibasaki M.
J. Am. Chem. Soc.
2000,
122:
6327
<A NAME="RU12705ST-14C">14c</A>
Shibasaki M.
Yoshikawa N.
Chem. Rev.
2002,
102:
2187
<A NAME="RU12705ST-15A">15a</A>
Kanai M.
Tomioka K.
Tetrahedron Lett.
1995,
36:
4271
<A NAME="RU12705ST-15B">15b</A>
Kanai M.
Tomioka K.
Tetrahedron Lett.
1995,
36:
4275
<A NAME="RU12705ST-16">16</A>
Trost BM.
Yeh VSC.
Ito H.
Bremeyer N.
Org. Lett.
2002,
4:
2621
<A NAME="RU12705ST-17A">17a</A>
Kim YH.
Acc. Chem. Res.
2001,
34:
955
<A NAME="RU12705ST-17B">17b</A>
Kim SM.
Byun IS.
Kim YH.
Angew. Chem. Int. Ed.
2000,
39:
728
<A NAME="RU12705ST-18">18</A>
2,6-Bis[2-(diphenylphosphinoylmethyl)octahydroindol-1-ylmethyl]-4-methylphenol(7); Typical Procedure
2,6-Bis(bromomethyl)-4-methylphenol (292 mg, 1 mmol) was added in one portion to a
stirred and cooled solution of 2-(diphenylphosphinoylmethyl)octahydroindole (879 mg,
2 mmol) and K2CO3 (552 mg, 4 mmol) in anhyd DMF (5 mL). The ice bath was removed after the addition
and the resulting solution was allowed to stir at r.t. for 24 h before it was diluted
with H2O and Et2O. The two phases were separated and the aqueous phase was extracted with Et2O three times and the combined organic phases were washed H2O, brine, dried over MgSO4, and evaporated. The residue was purified by chromatography through a short slica
gel column (EtOAc-hexane, 1:1) to give 7 in 64% yield (520 mg, yellow foam). [α]D
23 -79.8 (c 1, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 1.42-1.60 (m, 8 H), 1. 65-1.96 (m, 4 H), 2.06 (d, 2 H), 2.08-2.34 (m, 6 H),
2.12 (s, 3 H), 2.36 (t, 2 H), 2.84-2.93 (m, 4 H), 3.28 (d, 2 H), 3.38 (d, 2 H), 3.52
(s, 2 H), 3.96 (s, 2 H), 6.75 (s, 2 H), 7.31-7.38 (m, 10 H), 7.39-7.64 (m, 10 H).
13C NMR (75.5 MHz, CDCl3): δ = 20.36, 21.97, 31.34, 31.77, 32.92, 33.63, 52.50, 53.15, 53.54, 59.40, 60.00,
123.1, 128.6, 129.6, 129.7, 131.5, 135.0, 155.3. 31P NMR (121.5 MHz, CDCl3): δ = 29.31 (s). MS (MALDI-TOF): m/z calcd for C51H60N2O3P2, 810.4079; found, 811.0474.
<A NAME="RU12705ST-19">19</A>
Asymmetric Cyanosilylation of Aldehydes (Table 4, entry 2); Typical Procedure
To a solution of 7 (20.2 mg, 0.025 mmol) and O=PPh3 (139 mg, 0.5 mmol) in CH2Cl2 (5 mL), Ti(Oi-Pr)4 (1 M in toluene, 25 µL, 0.025 mmol) was added at r.t., and the mixture was stirred
at 0 °C for 30 min under an argon atmosphere. To this solution, benzaldehyde (0.25
mol) was added after the addition of TMSCN (60 µL, 0.5 mmol) in CH2Cl2 (1 mL) at -20 °C. The reaction was monitored by TLC, after 24 h, the mixture was
concentrated and then purified by silica gel chromatography (EtOAc-hexane, 1:4) to
obtain phenyltrimethylsilanyloxyacetonitrile in 74% yield. 1H NMR (300 MHz, CDCl3): d = 0.08 (s, 9 H), 5.55 (s, 1 H), 7.40-7.60 (m, 5 H). After conversion to acetate,
the enantiomeric excess was determined by HPLC on a Chiralcel OD column, hexane-i-PrOH, 99:1 (flow rate = 1.0 mL/min), t
R (R) 12.92 min (major), t
R (S) 14.80 min (minor).