Abstract
The 2,3,4-tribromopyrrole 4 and the 2,3-dibromopyrrole 10 were shown to undergo regioselective Suzuki cross-coupling reactions at the 2-position.
After optimization best yields in the reaction with 4-tert-butylphenyl boronic acid (5a) were 68% and 86%. Other boronic acids 5 were employed in the reaction with pyrrole 4 and gave the monosubstitution products 6 in 33-52% yield. A subsequent cross-coupling at positions C-3 and C-4 could be achieved
on 3,4-dibromopyrrole 6a (84% yield).
Key words
catalysis - cross-coupling - heterocycles - palladium - pyrroles - regioselectivity
References
<A NAME="RG18005ST-1A">1a</A>
Li JJ.
Gribble GW.
Palladium in Heterocyclic Chemistry
Pergamon Press;
Oxford:
2000.
<A NAME="RG18005ST-1B">1b</A>
Kalinin VN.
Synthesis
1992,
413
<A NAME="RG18005ST-2">2</A> Review:
Schröter S.
Stock C.
Bach T.
Tetrahedron
2005,
61:
2245
<A NAME="RG18005ST-3A">3a</A>
Bach T.
Krüger L.
Tetrahedron Lett.
1998,
39:
1729
<A NAME="RG18005ST-3B">3b</A>
Bach T.
Krüger L.
Synlett
1998,
1185
<A NAME="RG18005ST-3C">3c</A>
Bach T.
Krüger L.
Eur. J. Org. Chem.
1999,
2045
<A NAME="RG18005ST-4">4</A> For cross-coupling studies by other groups on 2,3-dibromofurans, see:
Brandsma L.
Vasilevsky SF.
Verkruijsse HD.
Application of Transition Metal Catalysts in Organic Synthesis
Springer;
Berlin:
1999.
p.223
<A NAME="RG18005ST-5A">5a</A>
Bach T.
Bartels M.
Synlett
2001,
1284
<A NAME="RG18005ST-5B">5b</A>
Bach T.
Bartels M.
Tetrahedron Lett.
2002,
43:
9125
<A NAME="RG18005ST-5C">5c</A>
Bach T.
Bartels M.
Synthesis
2003,
925
<A NAME="RG18005ST-6">6</A> For related cross-coupling studies by other groups, see:
Lin S.-Y.
Chen C.-L.
Lee Y.-J.
J. Org. Chem.
2003,
68:
2968
<A NAME="RG18005ST-7A">7a</A>
Bach T.
Heuser S.
Tetrahedron Lett.
2000,
41:
1707
<A NAME="RG18005ST-7B">7b</A>
Bach T.
Heuser S.
Angew. Chem. Int. Ed.
2001,
40:
3184
<A NAME="RG18005ST-7C">7c</A>
Bach T.
Heuser S.
Synlett
2002,
2089
<A NAME="RG18005ST-7D">7d</A>
Bach T.
Heuser S.
Chem. Eur. J.
2002,
8:
5585
<A NAME="RG18005ST-7E">7e</A>
Bach T.
Heuser S.
J. Org. Chem.
2002,
67:
5789
<A NAME="RG18005ST-7F">7f</A>
Spieß A.
Heckmann G.
Bach T.
Synlett
2004,
131
<A NAME="RG18005ST-7G">7g</A>
Heckmann G.
Bach T.
Angew. Chem. Int. Ed.
2005,
44:
1199
For cross-coupling studies by other groups on 2,4-dibromothiazole, see:
<A NAME="RG18005ST-8A">8a</A>
Nicolaou KC.
He Y.
Roshangar F.
King NP.
Vourloumis D.
Li T.
Angew. Chem. Int. Ed.
1998,
37:
84
<A NAME="RG18005ST-8B">8b</A>
Nicolaou KC.
King NP.
Finlay MRV.
He V.
Roshangar F.
Vourloumis D.
Vallberg H.
Sarabia F.
Ninkovic S.
Hepworth D.
Bioorg. Med. Chem.
1999,
7:
665
<A NAME="RG18005ST-8C">8c</A>
Shao J.
Panek JS.
Org. Lett.
2004,
6:
3083
<A NAME="RG18005ST-9">9</A>
Iwao M.
Takeuchi T.
Fujikawa N.
Fukuda T.
Ishibashi F.
Tetrahedron Lett.
2003,
44:
4443
<A NAME="RG18005ST-10A">10a</A>
Muchowski JM.
Naef R.
Helv. Chim. Acta
1984,
67:
1168
<A NAME="RG18005ST-10B">10b</A>
Bray BL.
Mathies PH.
Naef R.
Solas DR.
Tidwell TT.
Artis DR.
Muchowski JM.
J. Org. Chem.
1990,
55:
6317
<A NAME="RG18005ST-10C">10c</A>
Banwell MG.
Flynn BL.
Hamel E.
Hockless DCR.
Chem. Commun.
1997,
207
<A NAME="RG18005ST-10D">10d</A>
Garg NK.
Caspi DD.
Stoltz BM.
J. Am. Chem. Soc.
2004,
126:
9552
<A NAME="RG18005ST-10E">10e</A>
Marfil M.
Albericio F.
Álvarez M.
Tetrahedron
2004,
60:
8659
<A NAME="RG18005ST-11A">11a</A>
Chan H.-W.
Chan P.-C.
Liu J.-H.
Wong HNC.
Chem. Commun.
1997,
1515
<A NAME="RG18005ST-11B">11b</A>
Liu J.-H.
Chan H.-W.
Wong HNC.
J. Org. Chem.
2000,
65:
3574
<A NAME="RG18005ST-11C">11c</A>
Liu J.-H.
Yang Q.-C.
Mak TCW.
Wong HNC.
J. Org. Chem.
2000,
65:
3587
<A NAME="RG18005ST-11D">11d</A>
Handy ST.
Zhang Y.
Bregman H.
J. Org. Chem.
2004,
69:
2362
<A NAME="RG18005ST-12">12</A>
Blicke FF.
Blake ES.
J. Am. Chem. Soc.
1930,
52:
235
<A NAME="RG18005ST-13">13</A>
Balaganesan B.
Shen W.-J.
Chen CH.
Tetrahedron Lett.
2003,
44:
5747
<A NAME="RG18005ST-14A">14a</A>
Miyaura N.
Yamada K.
Suzuki A.
Tetrahedron Lett.
1979,
20:
3437
<A NAME="RG18005ST-14B">14b</A>
Miyaura N.
Yamada K.
Suginome H.
Suzuki A.
J. Am. Chem. Soc.
1985,
107:
972
<A NAME="RG18005ST-14C">14c</A> Review:
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
<A NAME="RG18005ST-15">15</A>
Farina V.
Krishnan B.
J. Am. Chem. Soc.
1991,
113:
9585
<A NAME="RG18005ST-16">16</A>
Typical Procedure.
A Schlenk flask was charged with tribromopyrrole 4 (188 mg, 0.5 mmol), boronic acid 5a (107 mg, 0.6 mmol), Pd(PPh3)4 (58 mg, 0.05 mmol) and Cs2CO3 (198 mg, 0.6 mmol). The flask was evacuated and flushed with argon (five cycles).
Mesitylene (5 mL), EtOH (1 mL) and H2O (1 mL) were added. The flask was once again purged with argon. The reaction mixture
was heated to 150 °C and stirred for 20 h. Then, H2O (4 mL) was added and the aqueous layer was extracted with toluene (3 × 5 mL). The
combined organic layers were washed with H2O (25 mL) and brine (25 mL) and dried over Na2SO4. After filtration and removal of the solvents the crude product was purified by flash
chromatograpy (silica, pentane-Et2O, 3:1) to give pyrrole 6a (142 mg, 0.33 mmol, 66%) as a white solid; mp 162-164 °C. 1H NMR (360 MHz, CDCl3): δ = 1.36 (s, 9 H), 1.38 (t, 3
J = 7.2 Hz, 3 H), 4.34 (q, 3
J = 7.2 Hz, 2 H), 7.49 (d, 3
J = 8.4 Hz, 2 H), 7.62 (d, 3
J = 8.4 Hz, 2 H), 9.55 (br s, 1 H) ppm. 13C NMR (90.6 MHz, CDCl3): δ = 14.5, 31.4, 35.0, 61.4, 101.1, 108.0, 120.3, 126.0, 127.3, 127.3, 134.0, 152.5,
160.0 ppm. Anal. Calcd for C17H19Br2NO2 (429.15): C, 47.58; H, 4.46; N, 3.26. Found: C, 47.37; H, 4.42; N, 3.09.
<A NAME="RG18005ST-17">17</A>
Morgan KJ.
Morrey DP.
Tetrahedron
1966,
22:
57