Abstract
The asymmetric alkylation of a tert -butyl benzophenone Schiff base derivative in water has been successfully carried
out in a ‘reversed-phase reaction’. The effects of chiral phase-transfer catalysts
(PTCs), electrophiles, and reaction conditions (temperature, concentration, and the
ratio of reagents, etc.) were investigated. Under the optimized conditions high chemical
yield (99%) and good ee (up to 87%) were obtained.
Key words
alkylations - phase-transfer - asymmetric catalysis - cinchona alkoloids - amino
acids
References
<A NAME="RU15905ST-1A">1a </A>
Lygo B.
Wainwright PG.
Tetrahedron Lett.
1998,
39:
1599
<A NAME="RU15905ST-1B">1b </A>
Lygo B.
Wainwright PG.
Tetrahedron
1999,
55:
6289
<A NAME="RU15905ST-1C">1c </A>
Lygo B.
To DCM.
Tetrahedron Lett.
2001,
42:
1343
<A NAME="RU15905ST-1D">1d </A>
Corey EJ.
Zhang F.-Y.
Org. Lett.
1999,
1:
1287
<A NAME="RU15905ST-1E">1e </A>
Ooi T.
Ohara D.
Tamura M.
Maruoka K.
J. Am. Chem. Soc.
2004,
126:
6844
<A NAME="RU15905ST-2A">2a </A>
Ma D.
Cheng K.
Tetrahedron: Asymmetry
1999,
10:
713
<A NAME="RU15905ST-2B">2b </A>
Ishikawa T.
Araki Y.
Kumamoto T.
Seki H.
Fukuda K.
Isobe T.
Chem. Commun.
2001,
245
<A NAME="RU15905ST-2C">2c </A>
Arai S.
Truji R.
Nashida A.
Tetrahedron Lett.
2002,
43:
9535
<A NAME="RU15905ST-3">3 </A>
Arai S.
Nakayama K.
Ishida T.
Shioiri T.
Tetrahedron Lett.
1999,
40:
4215
<A NAME="RU15905ST-4A">4a </A>
Arai S.
Shioiri T.
Tetrahedron Lett.
1998,
39:
2145
<A NAME="RU15905ST-4B">4b </A>
Arai S.
Shirai Y.
Ishida T.
Shioiri T.
Tetrahedron
1999,
55:
6375
<A NAME="RU15905ST-4C">4c </A>
Arai S.
Shirai Y.
Ishida T.
Shioiri T.
Chem. Commun.
1999,
49
<A NAME="RU15905ST-4D">4d </A>
Arai S.
Ishida T.
Shioiri T.
Tetrahedron Lett.
1998,
39:
8299
<A NAME="RU15905ST-4E">4e </A>
Arai S.
Shioiri T.
Tetrahedron
2002,
58:
1407
<A NAME="RU15905ST-4F">4f </A>
Arai S.
Tokumaru K.
Aoyama T.
Tetrahedron Lett.
2004,
45:
1845
<A NAME="RU15905ST-5A">5a </A>
O’Donnell MJ.
Bennett WD.
Wu S.
J. Am. Chem. Soc.
1989,
111:
2353
<A NAME="RU15905ST-5B">5b </A>
Lygo B.
Wainwright PG.
Tetrahedron Lett.
1997,
38:
8595
<A NAME="RU15905ST-5C">5c </A>
Corey EJ.
Xu F.
Noe MC.
J. Am. Chem. Soc.
1997,
119:
12414
<A NAME="RU15905ST-5D">5d </A>
Park HG.
Jeong BS.
Yoo MS.
Lee JH.
Park MK.
Lee YJ.
Kim MJ.
Jew SS.
Angew. Chem. Int. Ed.
2002,
41:
3036
<A NAME="RU15905ST-5E">5e </A>
Jew SS.
Yoo MS.
Jeong BS.
Park IY.
Park HG.
Org. Lett.
2002,
4:
4245
<A NAME="RU15905ST-6A">6a </A>
Corey EJ.
Noe MC.
Xu F.
Tetrahedron Lett.
1998,
39:
5347
<A NAME="RU15905ST-6B">6b </A>
Lygo B.
Tetrahedron Lett.
1999,
40:
1389
<A NAME="RU15905ST-6C">6c </A>
Lygo B.
Andrews BI.
Slack D.
Tetrahedron Lett.
2003,
44:
9039
<A NAME="RU15905ST-6D">6d </A>
Ooi T.
Tayama E.
Maruoka K.
Angew. Chem. Int. Ed.
2003,
42:
579
<A NAME="RU15905ST-7A">7a </A>
Ooi T.
Kameda M.
Makuoka K.
J. Am. Chem. Soc.
1999,
121:
6519
<A NAME="RU15905ST-7B">7b </A>
Ooi T.
Uematsu Y.
Kameda M.
Maruoka K.
Angew. Chem. Int. Ed.
2002,
41:
1551
<A NAME="RU15905ST-7C">7c </A>
Ooi T.
Kameda M.
Maruoka K.
J. Am. Chem. Soc.
2003,
125:
5139
<A NAME="RU15905ST-8A">8a </A>
Manabe K.
Tetrahedron Lett.
1998,
39:
5807
<A NAME="RU15905ST-8B">8b </A>
Manabe K.
Tetrahedron
1998,
54:
14456
<A NAME="RU15905ST-9A">9a </A>
Belokon YN.
Kotchetkov KA.
Churkina TD.
Ikonnikov NS.
Chesnokov AA.
Larionov AV.
Parmar VS.
Kumar R.
Kagan HB.
Tetrahedron: Asymmetry
1998,
9:
851
<A NAME="RU15905ST-9B">9b </A>
Belokon YN.
Kotchetkov KA.
Churkina TD.
Ikonnikov NS.
Chesnokov AA.
Larionov AV.
Singh I.
Parmar VS.
Vyskocil S.
Kagan HB.
J. Org. Chem.
2000,
65:
7041
<A NAME="RU15905ST-10A">10a </A>
Shibuguchi T.
Fukuta Y.
Akachi Y.
Sekine A.
Oshima T.
Shibasaki M.
Tetrahedron Lett.
2002,
43:
9539
<A NAME="RU15905ST-10B">10b </A>
Arai S.
Tsuji R.
Nishida A.
Tetrahedron Lett.
2002,
43:
9535
<A NAME="RU15905ST-11">11 </A>
Kita T.
Georgieva A.
Hashimoto Y.
Nakata T.
Nagasawa K.
Angew. Chem. Int. Ed.
2002,
41:
2832
<A NAME="RU15905ST-12A">12a </A>
Belokon YN.
North M.
Kublitski VS.
Ikonnikov NS.
Krasik PE.
Maleev VL.
Tetrahedron Lett.
1999,
40:
6105
<A NAME="RU15905ST-12B">12b </A>
Belokon YN.
Davies RG.
North M.
Tetrahedron Lett.
2000,
41:
7245
<A NAME="RU15905ST-13A">13a </A>
Zhang Z.-P.
Wang Y.-M.
Wang Z.
Hodge P.
React. Funct. Polym.
1999,
41:
37
<A NAME="RU15905ST-13B">13b </A>
Chichilla R.
Mazon P.
Najera C.
Tetrahedron: Asymmetry
2000,
11:
3277
<A NAME="RU15905ST-13C">13c </A>
Thierry B.
Plaquevent J.-C.
Cahard D.
Tetrahedron: Asymmetry
2003,
14:
1671
<A NAME="RU15905ST-13D">13d </A>
Danelli T.
Annunziata R.
Benaglia M.
Cinquini M.
Tetrahedron: Asymmetry
2003,
14:
461
<A NAME="RU15905ST-14A">14a </A>
Ooi T.
Tayama E.
Doda K.
Takeuchi M.
Maruoka K.
Synlett
2000,
1500
<A NAME="RU15905ST-14B">14b </A>
Okino T.
Takemoto T.
Org. Lett.
2001,
3:
1515
<A NAME="RU15905ST-14C">14c </A>
Yu H.
Koshima H.
Tetrahedron Lett.
2003,
44:
9209
<A NAME="RU15905ST-14D">14d </A>
Yu H.
Koshima H.
Tetrahedron
2004,
60:
8405
<A NAME="RU15905ST-15">15 </A>
Fringuelli F.
Matteucci M.
Piermatti O.
Pizzo F.
Burla MC.
J. Org. Chem.
2001,
66:
4661
<A NAME="RU15905ST-16">16 </A>
Typical procedure for asymmetric alkylation : A mixture of 1 (0.678 mmol, 200 mg), benzyl bromide (5.0 equiv, 0.4 mL) and the catalyst (0.01 equiv,
4 mg) was cooled to 5 °C and a 1 M KOH aqueous solution (13 equiv, 9.0 mL) was added.
The mixture was vigorously stirred. When the reaction was finished, the mixture was
extracted with ethyl acetate (4 × 20 mL). The organic extracts were combined and dried
(Na2 SO4 ) then evaporated in vacuo.
<A NAME="RU15905ST-17">17 </A>
Synthesis of catalyst 3 : Cinchonidine (11.0 mmol, 3.234 g) and 4,4′-chloromethyl biphenyl (5.0 mmol, 1.255
g) were added to the solution of EtOH-DMF-CHCl3 (2.5: 3:1, 26 mL), followed by stirring at 100 °C for 8 h. After cooling the reaction
mixture to room temperature, the resulting suspension precipitated by the addition
of Et2 O. The solids were filtered, washed with Et2 O. The crude solid was recrystallized from MeOH to afford the desired product 3.566
g (85% yields) as an orange solid. The structure of sample was confirmed by a range
of analytical methods.
<A NAME="RU15905ST-18">18 </A>
Synthesis of catalyst 4 : A styrene-divinylbenzene copolymer (4.5 g, 7%) was swollen in DMF (100 mL) for 2
h, 9-O -(4-nitrobenzoyl)cinchonine (11.6 g) was added. The flask was heated at 80 °C for
60 h. During the course of the reaction the color of the copolymer beads turned dark
red. After cooling, the polymer beads were separated by filtration, washed with EtOH
(3 × 20 mL), DCE (3 × 20 mL), Et2 O (3 × 20 mL), and dried in vacuo. The structure of the sample was certified by several
analytical methods.
<A NAME="RU15905ST-19">19 </A>
O’Donnell MJ.
Wu S.
Huffman JC.
Tetrahedron
1994,
50:
4507
<A NAME="RU15905ST-20">20 </A> After all experiments were performed, we noticed that a recent paper reported
a similar result:
Mase N.
Ohno T.
Morimoto H.
Nitta F.
Yoda H.
Takabe K.
Tetrahedron Lett.
2005,
46:
3213