References
<A NAME="RD08505ST-1">1</A>
Hu EX.
Tetrahedron
2004,
60:
2701
For recent examples, see:
<A NAME="RD08505ST-2A">2a</A>
Mulvihill MJ.
Cesario C.
Smith V.
Beck P.
Nigro A.
J. Org. Chem.
2004,
69:
5124
<A NAME="RD08505ST-2B">2b</A>
Chuang T.-H.
Sharpless KB.
Org. Lett.
2000,
2:
3555 ; and references cited therein
<A NAME="RD08505ST-2C">2c</A>
Rowlands GJ.
Barnes WK.
Tetrahedron Lett.
2004,
45:
5347
<A NAME="RD08505ST-2D">2d</A>
Periasamy M.
Seenivasaperumal M.
Dharma Rao V.
Tetrahedron: Asymmetry
2004,
15:
3847
<A NAME="RD08505ST-3A">3a</A>
Gaertner VR.
Tetrahedron Lett.
1967,
4:
343
<A NAME="RD08505ST-3B">3b</A>
Gaertner VR.
J. Org. Chem.
1968,
33:
523
<A NAME="RD08505ST-4">4</A>
Leonard NJ.
Durand DA.
J. Org. Chem.
1968,
33:
1322
<A NAME="RD08505ST-5">5</A>
Cospito G.
Illuminati G.
Lilloci C.
Petride H.
J. Org. Chem.
1981,
46:
2944
<A NAME="RD08505ST-6A">6a</A>
O’Brien P.
Phillips DW.
Towers TD.
Tetrahedron Lett.
2002,
43:
7333
<A NAME="RD08505ST-6B">6b</A>
Concellón JM.
Riego E.
Bernard PL.
Org. Lett.
2002,
4:
1303
<A NAME="RD08505ST-6C">6c</A>
Concellón JM.
Bernard PL.
Pérez-Andrés JA.
Tetrahedron Lett.
2000,
41:
1231
<A NAME="RD08505ST-6D">6d</A>
Higgins RH.
Faircloth WJ.
Baughman RG.
Eaton QL.
J. Org. Chem.
1994,
59:
2172
<A NAME="RD08505ST-6E">6e</A>
Guidicelli M.-B.
Picq D.
Anker D.
Tetrahedron Lett.
1992,
48:
6033
<A NAME="RD08505ST-6F">6f</A>
Kane MP.
Szmuszkovicz J.
J. Org. Chem.
1981,
46:
3728
<A NAME="RD08505ST-6G">6g</A>
Heller M.
Bernstein S.
J. Org. Chem.
1971,
36:
1386
<A NAME="RD08505ST-6H">6h</A>
Jeziorna A.
Heliński J.
Krawiecka B.
Synthesis
2003,
288
<A NAME="RD08505ST-6I">6i</A>
Jeziorna-Bakalarz A.
Heliński J.
Krawiecka B.
J. Chem. Soc., Perkin Trans. 1
2001,
1086
<A NAME="RD08505ST-6J">6j</A>
Heliński J.
Skrzypczynski Z.
Michalski J.
Tetrahedron Lett.
1995,
36:
9201
<A NAME="RD08505ST-6K">6k</A>
Jeziorna A.
Heliński J.
Krawiecka B.
Tetrahedron Lett.
2003,
44:
3239
<A NAME="RD08505ST-6L">6l</A>
Bakalarz A.
Heliński J.
Krawiecka B.
Michalski J.
Potrzebowski MJ.
Tetrahedron
1999,
55:
12211
<A NAME="RD08505ST-6M">6m</A>
Sudo A.
Iitaka Y.
Endo T.
J. Polym. Sci., Part A: Polym. Chem.
2002,
40:
1912
<A NAME="RD08505ST-7A">7a</A>
Agami C.
Couty F.
Evano G.
Tetrahedron: Asymmetry
2002,
13:
297
<A NAME="RD08505ST-7B">7b</A>
Carlin-Sinclair A.
Couty F.
Rabasso N.
Synlett
2003,
726
<A NAME="RD08505ST-7C">7c</A>
Agami C.
Couty F.
Rabasso N.
Tetrahedron Lett.
2002,
43:
4633
<A NAME="RD08505ST-8A">8a</A>
Couty F.
Durrat F.
Prim D.
Tetrahedron Lett.
2003,
44:
5209
<A NAME="RD08505ST-8B">8b</A>
Couty F.
Evano G.
Prim D.
Marrot J.
Eur. J. Org. Chem.
2004,
3893
<A NAME="RD08505ST-8C">8c</A>
Couty F.
Durrat F.
Evano G.
Prim D.
Tetrahedron Lett.
2004,
45:
7525
<A NAME="RD08505ST-9">9</A>
Baldwin JE.
Thomas RC.
Kruse LI.
Silberman L.
J. Org. Chem.
1977,
42:
3846
<A NAME="RD08505ST-10">10</A>
All new compounds were characterized by 1H NMR, 13C NMR spectroscopy, mass spectra analysis, and for most relevant compounds, by elementary
analysis. Typical procedure for the preparation of an azetidinium salt is given below:
To a solution of the azetidine (2.0 mmol) in CH2Cl2 (10 mL), cooled at 0 °C, was added dropwise methyltrifluoromethanesulfonate (0.45
mL, 4 mmol). The reaction mixture was stirred for 1 h at r.t., and the solvent was
evaporated under reduced pressure. The crude salt was washed thoroughly with small
quantities of dry Et2O, and dried under vacuum.
Compound 2: yield 99%; [α] -34 (c 0.5, acetone); mp 116 °C. MS (ESI Pos): m/z = 263.2 [M - Otf]+. 1H NMR [300 MHz, (CD3)2CO]: δ = 7.89-7.82 (m, 2 H, Ph), 7.67-7.42 (m, 8 H, Ph), 6.34 (d, J = 9.3 Hz, 1 H, H-2), 5.31-5.14 (m, 4 H, H-3, H-4, H-6, H-6′), 4.91-4.81 (m, 1 H,
H-4′), 3.70 (s, 3 H, H-5) ppm. 13C NMR [75 MHz, (CD3)2CO]: δ = 133.9 (C
ipso
Ph), 133.1, 131.9, 130.5, 129.9, 129.8, 128.4 (CH Ph), 128.3 (C
ipso
Ph), 112.3 (CN), 69.3, 69.2 (C-4, C-6), 65.3 (C-2), 46.9 (C-5), 39.6 (C-3) ppm. Anal.
Calcd for C19H19F3N2O3S: C, 55.33; H, 4.64; N, 6.79. Found: C, 55.23; H, 4.66; N, 6.74.
Typical procedure for the reaction of an azetidinium salt with sodium azide is given
below: To a solution of azetidinium triflate (2.0 mmol) in DMF (10 mL) was added sodium
azide (650 mg, 10.0 mmol) and the suspension was stirred overnight at r.t. Partition
between Et2O and H2O was followed by usual work-up. The crude residue was examined by NMR, and the major
compound was purified by flash chromatography.
Compound 11: purified by flash chromatography (Et2O-cyclohexane, 10:90, 20:80, 40:60); yield 93%; clear oil; R
f
= 0.61 (Et2O-petroleum ether, 3:7); [α] -90 (c 0.75, CH2Cl2). MS (IC NH3 Pos): m/z = 353 [M + H]+. 1H NMR [300 MHz, (CD3)2CO]: δ = 7.38-7.19 (m, 10 H, Ph), 4.67 (d, J = 4.2 Hz, 1 H, H-2), 4.17 (q, J = 7.1 Hz, 2 H, H-7), 3.66 (d, J = 13.1 Hz, 1 H, H-6), 3.54-3.47 (m, 2 H, H-3, H-6′), 3.01 (t, J = 11.9 Hz, 1 H, H-4), 2.47 (dd, J = 4.2, 12.3 Hz, 1 H, H-4′), 2.28 (s, 3 H, H-5), 1.22 (t, J = 7.1 Hz, 3 H, H-8) ppm. 13C NMR [75 MHz, (CD3)2CO]: δ = 170.2 (C-1), 138.9, 138.1 (C
ipso
Ph), 129.2, 128.9, 128.5, 128.4, 127.6, 127.3 (CH Ph), 64.3 (C-2), 62.9 (C-6), 61.7
(C-7), 59.3 (C-4), 45.2 (C-3), 42.5 (C-5), 14.2 (C-8) ppm. Anal. Calcd for C20H24N4O2: C, 68.16; H, 6.86; N, 15.90. Found: C, 68.03; H, 6.91; N, 15.80.