Abstract
A facile general route was developed to synthesise new trisubstituted purin-8-one
derivatives starting from cheap and readily available 5-bromouracil. These fused planar
heterocycles present key hydrogen bond donating/accepting functionalities, making
them interesting scaffolds for binding to biological targets.
Key words
purin-8-ones - fused-ring systems - nucleophilic aromatic substitution - ring-closure
- microwave-assisted synthesis
References
<A NAME="RP03305SS-1">1 </A>
Laufer SA.
Domeyer DM.
Scior TRF.
Albrecht W.
Hauser DRJ.
J. Med. Chem.
2005,
48:
710
<A NAME="RP03305SS-2A">2a </A>
Beck JP.
Arvanitis AG.
Curry MA.
Rescinito JT.
Fitzgerald LW.
Gilligan PJ.
Zaczek R.
Trainor GL.
Bioorg. Med. Chem. Lett.
1999,
9:
967
<A NAME="RP03305SS-2B">2b </A>
Bakthavatachalam R. inventors; PCT Int. Appl. WO, 01/83486.
<A NAME="RP03305SS-3A">3a </A>
Goodman MG.
Goodman JH.
J. Immunol.
1994,
130:
4081
<A NAME="RP03305SS-3B">3b </A>
Reitz AB.
Goodman MG.
Pope BL.
Argentieri DC.
Bell SC.
Burr LE.
Chourmouzis E.
Come J.
Goodman JH.
Klaubert DH.
Maryanoff BE.
McDonnell ME.
Rampulla MS.
Schott MR.
Chen R.
J. Med. Chem.
1994,
37:
3561
<A NAME="RP03305SS-3C">3c </A>
Reitz AB,
Goodman MG,
Chen R, and
Maryanoff BE. inventors; U.S. Pat., 5786359.
<A NAME="RP03305SS-4A">4a </A>
Kurimoto A.
Ogino T.
Ichii S.
Isobe Y.
Tobe M.
Ogita H.
Takaku H.
Sajiki H.
Hirota K.
Kawakami H.
Bioorg. Med. Chem.
2003,
11:
5501
<A NAME="RP03305SS-4B">4b </A>
Hirota K.
Kazaoka K.
Sajiki H.
Bioorg. Med. Chem.
2003,
11:
2715
<A NAME="RP03305SS-4C">4c </A>
Hirota K.
Kazaoka K.
Niimoto I.
Sajiki H.
Org. Biomol. Chem.
2003,
1:
1354
<A NAME="RP03305SS-5A">5a </A>
Moravec J.
Krytof V.
Hanu J.
Havlíček L.
Moravcová D.
Fuksová K.
Kuzma M.
Lenobel R.
Otyepka M.
Strnad M.
Bioorg. Med. Chem. Lett.
2003,
13:
2993
<A NAME="RP03305SS-5B">5b </A>
Haesslein JL.
Jullian N.
Curr. Top. Med. Chem.
2002,
2:
1037
<A NAME="RP03305SS-6A">6a </A>
Rashidi MR.
Smith JA.
Clarke SE.
Beedham C.
Drug Metab. Dispos.
1997,
25:
805
<A NAME="RP03305SS-6B">6b </A>
Pochet S.
Marliere P.
C. R. Acad. Sci. Paris, Life Sciences/Biochemistry
1996,
319:
1
<A NAME="RP03305SS-6C">6c </A>
Krenitsky TA.
Hall WW.
De Miranda P.
Beauchamp LM.
Schaeffer HJ.
Whiteman PL.
Proc. Natl. Acad. Sci. U.S.A.
1984,
81:
3209
<A NAME="RP03305SS-6D">6d </A>
Rokos H.
Hakspiel B.
J. Carbohydr., Nucleosides, Nucleotides
1976,
3:
77
<A NAME="RP03305SS-6E">6e </A>
Dornow A.
Hinz E.
Chem. Ber.
1958,
91:
1834
<A NAME="RP03305SS-7">7 </A>
Phillips AP.
J. Am. Chem. Soc.
1951,
73:
1061
<A NAME="RP03305SS-8A">8a </A>
Girault G.
Coustal S.
Rumpf P.
Bull. Soc. Chim. Fr.
1972,
2787
<A NAME="RP03305SS-8B">8b </A>
O’Brien DE.
Wayne Noell C.
Robins RK.
Cheng CC.
J. Med. Chem.
1966,
9:
121
<A NAME="RP03305SS-9">9 </A>
The major by-product of the reaction proved to be the monochloro-product coming from
the substitution at the most reactive position 4. It can be recovered during the purification
and reused.
<A NAME="RP03305SS-10A">10a </A>
Sanghvi YS.
Larson SB.
Smee DF.
Revankar GR.
Robins RK.
Nucleosides Nucleotides
1991,
10:
1417
<A NAME="RP03305SS-10B">10b </A>
Cottam HB.
Larson SB.
Robins RK.
J. Heterocycl. Chem.
1987,
24:
821
<A NAME="RP03305SS-11">11 </A>
Harayama T.
Fukushi H.
Ogawa K.
Aratani T.
Sonehara S.
Yoneda F.
Chem. Pharm. Bull.
1987,
35:
4977
<A NAME="RP03305SS-12">12 </A>
Kazaoka K.
Sajiki H.
Hirota K.
Chem. Pharm. Bull.
2003,
51:
608
<A NAME="RP03305SS-13">13 </A>
LCMS technique suggested that an acyl chloride intermediate was formed. Moreover,
the 1 H NMR of this intermediate showed a split of the signal corresponding to the CH2 of the 5-benzylamino functionality, suggesting that the acyl chloride is fixed on
this amino substituent.
<A NAME="RP03305SS-14">14 </A>
Luo G.
Chen L.
Poindexter GS.
Tetrahedron Lett.
2002,
43:
5739
<A NAME="RP03305SS-15">15 </A>
Ding S.
Gray NS.
Ding Q.
Schultz PG.
Tetrahedron Lett.
2001,
42:
8751