References
<A NAME="RG08205ST-1">1</A>
Hyatt JA.
Raynolds PW.
Org. React.
1994,
45:
159
<A NAME="RG08205ST-2">2</A>
Greene AE.
Charbonnier F.
Tetrahedron Lett.
1985,
26:
5525
<A NAME="RG08205ST-3A">3a</A>
Nebois P.
Greene AE.
J. Org. Chem.
1996,
61:
5210
<A NAME="RG08205ST-3B">3b</A>
Kanazawa A.
Gillet S.
Delair P.
Greene AE.
J. Org. Chem.
1998,
63:
4660
<A NAME="RG08205ST-3C">3c</A>
Delair P.
Brot E.
Kanazawa A.
Greene AE.
J. Org. Chem.
1999,
64:
1383
<A NAME="RG08205ST-3D">3d</A>
Pourashraf M.
Delair P.
Rasmussen M.
Greene AE.
J. Org. Chem.
2000,
65:
6966
<A NAME="RG08205ST-3E">3e</A>
Rasmussen M.
Delair P.
Greene AE.
J. Org. Chem.
2001,
66:
5438
<A NAME="RG08205ST-3F">3f</A>
Roche C.
Delair P.
Greene AE.
Org. Lett.
2003,
5:
1741
<A NAME="RG08205ST-4A">4a</A>
Devlin JP.
Edwards OE.
Gorham PR.
Hunter NR.
Pike RK.
Stavric B.
Can. J. Chem.
1977,
55:
1367
<A NAME="RG08205ST-4B">4b</A>
Carmichael WW.
Biggs DF.
Gorham PR.
Science
1975,
187:
542
<A NAME="RG08205ST-5A">5a</A>
Mansell HL.
Tetrahedron
1996,
52:
6025
<A NAME="RG08205ST-5B">5b</A>
Oh C.-Y.
Kim K.-S.
Ham W.-H.
Tetrahedron Lett.
1998,
39:
2133
<A NAME="RG08205ST-5C">5c</A>
Trost BM.
Oslob JD.
J. Am. Chem. Soc.
1999,
121:
3057
<A NAME="RG08205ST-5D">5d</A>
Aggarwal VK.
Humphries PS.
Fenwick A.
Angew. Chem. Int. Ed.
1999,
38:
1985
<A NAME="RG08205ST-5E">5e</A>
Parsons PJ.
Camp NP.
Edwards N.
Sumoreeah LR.
Tetrahedron
2000,
56:
309
<A NAME="RG08205ST-5F">5f</A>
Wegee T.
Schwarz S.
Seitz G.
Tetrahedron: Asymmetry
2000,
11:
1405
<A NAME="RG08205ST-5G">5g</A>
Mori M.
Tomita T.
Kita Y.
Kitamura T.
Tetrahedron Lett.
2004,
45:
4397
<A NAME="RG08205ST-5H">5h</A>
Brenneman JB.
Martin SF.
Org. Lett.
2004,
6:
1469
<A NAME="RG08205ST-5I">5i</A>
Brenneman JB.
Machauer R.
Martin SF.
Tetrahedron
2004,
60:
7301
<A NAME="RG08205ST-6">6</A>
Delair P.
Kanazawa A.
de Azevedo MB.
Greene AE.
Tetrahedron: Asymmetry
1996,
7:
2707
<A NAME="RG08205ST-7">7</A>
Kann N.
Bernardes V.
Greene AE.
Org. Synth.
1997,
74:
13
<A NAME="RG08205ST-8">8</A>
Ho T.-L.
Liu S.-H.
Synth. Commun.
1987,
17:
969
<A NAME="RG08205ST-9">9</A>
Tamura Y.
Minamikawa J.
Ikeda M.
Synthesis
1977,
1
<A NAME="RG08205ST-10">10</A>
Johnston BD.
Slessor KN.
Oehlschlager AC.
J. Org. Chem.
1985,
50:
114
<A NAME="RG08205ST-11A">11a</A>
Esch PM.
Hiemstra H.
Klaver WJ.
Speckamp WN.
Heterocycles
1987,
26:
75
<A NAME="RG08205ST-11B">11b</A> For a recent review of N-acyliminium ion chemistry, see:
Maryanoff BE.
Zhang H.-C.
Cohen JH.
Turchi IJ.
Maryanoff CA.
Chem. Rev.
2004,
104:
1431
<A NAME="RG08205ST-12A">12a</A>
Brümmer O.
Rücker A.
Blechert S.
Chem. Eur. J.
1997,
3:
441
<A NAME="RG08205ST-12B">12b</A>
Connon SJ.
Blechert S.
Angew. Chem. Int. Ed.
2003,
42:
1900
<A NAME="RG08205ST-12C">12c</A>
Vernall AJ.
Adell AD.
Aldrichimica Acta
2003,
36:
93
<A NAME="RG08205ST-13">13</A>
Scoll M.
Ding S.
Lee CW.
Grubbs RH.
Org. Lett.
1999,
1:
953
<A NAME="RG08205ST-14">14</A>
To a solution of 6 (600 mg, 1.10 mmol) in 18.0 mL of CH2Cl2 at 0 °C was added dropwise 3.2 mL of formic acid. The reaction mixture was stirred
at 0 °C for 1.75 h and then quenched with a sat. solution of aq NaHCO3 and extracted with CH2Cl2. The organic phase was washed successively with H2O and brine and dried over anhyd Na2SO4. The crude product was purified by SiO2 chromatography (10-20% diethyl ether in pentane) to afford 386 mg (77%) of 7, as a 2:1 mixture of isomers. Analytical data for the major isomer of 7a: colorless oil; [α]D
25 -84.3 (c 1.0, CHCl3). IR: 3070, 1704, 1608, 1449, 1400, 1098, 1081 cm-1. 1H NMR (300 MHz, CDCl3, two rotamers): δ = 1.17-1.29 (m, 18 H), 1.44-1.53 (m, 2 H), 1.52 (d, J = 6.8 Hz, 3 H), 1.68-1.81 (m, 4 H), 1.98-2.03 (m, 1 H), 2.32 (m, 1 H), 2.67-2.89
(m, 2 H), 3.12-3.17 (m, 1 H), 3.62 (s, 3 H), 3.86 (m, 2 H), 4.09-4.32 (m, 2 H), 4.86-5.09
(m, 3 H), 5.86-6.17 (m, 1 H), 6.93 (s, 1 H), 7.03 (s, 1 H). 13C NMR (75.4 MHz, CDCl3, two rotamers): δ = 23.2, 23.4, 24.0, 24.5, 24.9, 25.0, 25.3, 27.6, 28.2, 28.4, 29.2,
31.7, 32.0, 34.1, 40.0, 40.9, 52.1, 52.4, 52.7, 52.9, 58.3, 58.7, 58.8, 66.0, 71.5,
74.1, 74.8, 112.6, 112.7, 120.6, 123.4, 133,1, 143.8, 144.2, 145.8, 145.9, 147.5,
149.0, 155.3, 155.6. MS (CI): m/z (%) = 456 (100) [MH+]. Anal. Calcd for C29H45NO3: C, 76.44; H, 9.95; N, 3.07. Found: C, 76.46; H, 10.11; N, 2.81.
<A NAME="RG08205ST-15">15</A>
Compound 7b (2:1 mixture of isomers): IR: 3432, 3073, 1683, 1463, 1403, 1347, 1122, 1087 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.40-2.00 (m, 7 H), 2.24-2.28 (m, 1 H), 2.47-2.78 (m, 2 H), 3.60-3.70 (4 s,
3 H), 4.00-4.50 (m, 3 H), 4.70-5.10 (m, 2 H), 5.60-6.15 (m, 1 H). MS (CI): m/z (%) = 226 (100) [MH+].
<A NAME="RG08205ST-16">16</A>
Compound 7c (2:1 mixture of isomers): IR: 3073, 1698, 1637, 1449, 1397, 1117 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.22-1.50 (m, 2 H), 1.60-1.80 (m, 4 H), 2.05-2.18 (m, 1 H), 2.38-2.53 (m, 1
H), 2.72-2.88 (m, 1 H), 3.73 (s, 3 H), 4.14-4.54 (m, 2 H), 4.60-4.78 (m, 1 H), 4.88-5.10
(m, 2 H), 5.54-6.13 (m, 1 H). HRMS (CI): m/z calcd for C12H19NO2I [M + 1]: 336.0461; found: 336.0471.
<A NAME="RG08205ST-17">17</A>
Compound 7d (2:1 mixture of isomers): IR: 3074, 1699, 1638, 1450, 1397, 1340, 1113 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.24-1.86 (m, 8 H), 1.94-2.06 (m, 1 H), 2.14-2.27 (m, 2 H), 3.66 (br s, 3 H),
4.10-4.50 (m, 2 H), 4.85-5.10 (m, 2 H), 5.70-6.20 (m, 1 H).
<A NAME="RG08205ST-18">18</A>
Tsuji J.
Synthesis
1984,
369
<A NAME="RG08205ST-19">19</A>
A single isomer was obtained. The ee of 8 was estimated to be 93% based on the rotation {[α]D
25 -13.7 (c 1.0, CH3OH)] and ee (94%) of the comparison material. This purity is consistent with the observed
diastereoselection (95:5) in the cycloaddition and a subsequent small enrichment.
<A NAME="RG08205ST-20">20</A>
Skrinjar M.
Nilsson C.
Wistrand L.-G.
Tetrahedron: Asymmetry
1992,
3:
1263