Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2005(5): 0875-0876
DOI: 10.1055/s-2005-864796
DOI: 10.1055/s-2005-864796
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York
Cinchona Alkaloid Derivatives as Chiral Organocatalysts
Further Information
Publication History
Publication Date:
10 March 2005 (online)
Biographical Sketches
Introduction
The last five years have witnessed a resurgence of interest in the cinchona alkaloids [1] [e.g. Quinine (1) and Quinidine (2)] due to their potential to serve as air- and moisture-insensitive asymmetric organocatalysts for a variety of enantioselective transformations. These materials are of particular synthetic utility as they are inexpensive, readily available natural products and are obtainable in either of their pseudo-enantiomeric forms. In addition to ready availability, cinchona alkaloids also possess both Lewis acidic (H-bonding) and Lewis basic (quinuclidine nitrogen) sites, thus making them potentially useful for the promotion of a variety of reactions via bifunctional catalysis.
Abstracts
(A) The nucleophile-catalysed Staudinger reaction [2] (not to be confused with its azide-reduction [3] namesake) is a process of considerable interest from a medicinal chemistry standpoint. [4] Lectka et al. [5] were the first to report the catalytic asymmetric [2+2] cycloaddition of ketenes with imines to form a variety of b-lactam compounds. | |
(B) The reaction of imines with activated alkenes (the aza-Baylis-Hillman reaction) catalysed by modified cinchona alkaloids has been reported. The use of a modified Quinidine-derived catalyst, i.e. b-isocupreidine, allowed the reaction between 1,1,1,3,3,3-hexafluoroisopropylacrylate and aromatic imines 5 to proceed in good yield with high enantioselectivity. [6] Interestingly, the corresponding aldehyde substrates (the Baylis-Hillman reaction) gave products with the opposite configuration. [7] | |
(C) Gaunt and co-workers have described a novel enantioselective organocatalytic synthesis of functionalised cyclopropanes [8] via intermediate ammonium ylides. [9] These reactions yielded exceptional enantio- and diastereoselectivities with a range of functional groups. | |
(D) Cinchona alkaloids have been used as nucleophilic catalysts for the cycloaddition reactions involving ketenes and aldehydes. [10] O-Trimethylsilyl derivatives of 1 and 2, along with structurally diverse aldehydes, provided access to a range of optically active b-lactones. | |
(E) Reaction of dihydroquinine with the b-keto ester 9 gives rise to a chiral ammonium enolate, which reacts with an electrophilic peroxide in a face-selective manner to form a-hydroxy-b-keto esters 10 with moderate enantioselectivity. Subsequent diastereoselective reduction of 10 affords anti-1,2-diols. [11] | |
(F) The cinchona alkaloid derivative-catalysed desymmetrisation of meso-anhydrides in the presence of methanol is an efficient strategy for the synthesis of non-racemic dicarboxylic acid monoesters. [12] The products were formed with high enantioselectivity (up to 98% ee) with 100% conversion of the anhydride using nucleophilic Sharpless AD ligands. [13] | |
(G) Corey and Huang have developed a cinchona alkaloid derivative [14] capable of catalysing the Strecker reaction of N-allylbenzaldimines with HCN. This provides a concise, versatile route to a variety of a-amino acids. | |
(H) An example of a cinchona alkaloid-catalysed asymmetric a-halogenation/esterification transformation involving ketenes has also been described. [15] Synthetically useful enantiopure a-chloroesters are readily accessible from commercially available acid chlorides using this process. |
- 1
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138 - 2
Staudinger H. Justus Liebigs Ann. Chem. 1907, 356: 51 - 3
Staudinger H.Meyer J. Helv. Chim. Acta 1919, 635 - 4
Chemistry and Biology of Beta-Lactam Antibiotics
Vol. 1-3:
Morin RB.Gorman M. Academic Press; New York: 1982. - 5
Taggi AE.Hafez AM.Wack H.Young B.Ferraris D.Lectka T. J. Am. Chem. Soc. 2002, 124: 6626 - 6
Kawahara S.Nakano A.Esumi T.Iwabuchi Y.Hatakeyama S. Org. Lett. 2003, 5: 3103 - 7
Iwabuchi Y.Nakatani M.Yokoyama N.Hatekyama S. J. Am. Chem. Soc. 1999, 121: 10219 - 8
Papageorgiou CD.Cubillo de Dios MA.Ley SV.Gaunt MJ. Angew. Chem. Int. Ed. 2004, 43: 4641 - 9
Jonczyk A.Konarska A. Synlett 1999, 1085 - 10
Zhu C.Shen X.Nelson SA. J. Am. Chem. Soc. 2004, 126: 5352 - 11
Acocella MR.Mancheno OG.Bella M.Jorgensen KA. J. Org. Chem. 2004, 69: 8165 - 12
Chen Y.Tian SK.Deng L. J. Am. Chem. Soc. 2000, 122: 9542 - 13
Sharpless KB.Amberg W.Beller M.Chen H.Hartung J.Kawanami Y.Lubben D.Manoury E.Ogino Y.Shibata T.Ukita T. J. Org. Chem. 1991, 56: 4585 - 14
Huang J.Corey EJ. Org. Lett. 2004, 6: 5027 - 15
France S.Wack H.Taggi AE.Hafez AM.Wagerle TR.Shah MH.Dusich CL.Lectka T. J. Am. Chem. Soc. 2004, 126: 4245
References
- 1
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138 - 2
Staudinger H. Justus Liebigs Ann. Chem. 1907, 356: 51 - 3
Staudinger H.Meyer J. Helv. Chim. Acta 1919, 635 - 4
Chemistry and Biology of Beta-Lactam Antibiotics
Vol. 1-3:
Morin RB.Gorman M. Academic Press; New York: 1982. - 5
Taggi AE.Hafez AM.Wack H.Young B.Ferraris D.Lectka T. J. Am. Chem. Soc. 2002, 124: 6626 - 6
Kawahara S.Nakano A.Esumi T.Iwabuchi Y.Hatakeyama S. Org. Lett. 2003, 5: 3103 - 7
Iwabuchi Y.Nakatani M.Yokoyama N.Hatekyama S. J. Am. Chem. Soc. 1999, 121: 10219 - 8
Papageorgiou CD.Cubillo de Dios MA.Ley SV.Gaunt MJ. Angew. Chem. Int. Ed. 2004, 43: 4641 - 9
Jonczyk A.Konarska A. Synlett 1999, 1085 - 10
Zhu C.Shen X.Nelson SA. J. Am. Chem. Soc. 2004, 126: 5352 - 11
Acocella MR.Mancheno OG.Bella M.Jorgensen KA. J. Org. Chem. 2004, 69: 8165 - 12
Chen Y.Tian SK.Deng L. J. Am. Chem. Soc. 2000, 122: 9542 - 13
Sharpless KB.Amberg W.Beller M.Chen H.Hartung J.Kawanami Y.Lubben D.Manoury E.Ogino Y.Shibata T.Ukita T. J. Org. Chem. 1991, 56: 4585 - 14
Huang J.Corey EJ. Org. Lett. 2004, 6: 5027 - 15
France S.Wack H.Taggi AE.Hafez AM.Wagerle TR.Shah MH.Dusich CL.Lectka T. J. Am. Chem. Soc. 2004, 126: 4245