Abstract
Highly modular C1-symmetric aminosulfoximines were prepared and applied as chiral ligands in copper-catalyzed
enantioselective carbonyl-ene reactions. The optimized system catalyzed the conversion
of pyruvates and 1,1-disubstituted olefins yielding the corresponding hydroxy esters
with high enantiomeric excesses (up to 91% ee) in moderate yields.
Key words
asymmetric catalysis - α-hydroxy esters - carbonyl-ene reactions - copper - sulfoximines
References
Review:
<A NAME="RG00205ST-1A">1a</A>
Johnson CR.
Acc. Chem. Res.
1973,
6:
341
<A NAME="RG00205ST-1B">1b</A>
Pyne SG.
Sulfur Rep.
1992,
12:
57
<A NAME="RG00205ST-1C">1c</A>
Reggelin M.
Zur C.
Synthesis
2000,
1
Selected reviews:
<A NAME="RG00205ST-2A">2a</A>
Meister A.
Biochem. Biophys. Acta
1995,
35
<A NAME="RG00205ST-2B">2b</A>
Anderson ME.
Chem.-Biol. Interact.
1998,
111:
1
<A NAME="RG00205ST-2C">2c</A>
Muldoon LL.
Walker-Rosenfeld LSL.
Hale C.
Purcell SE.
Bennett LC.
Neuwelt EA.
J. Pharmacol. Exp. Ther.
2001,
296:
797
<A NAME="RG00205ST-3A">3a</A>
Mock WL.
Tsay J.-T.
J. Am. Chem. Soc.
1989,
111:
4467
<A NAME="RG00205ST-3B">3b</A>
Mock WL.
Zhang JZ.
J. Biol. Chem.
1991,
266:
6393
<A NAME="RG00205ST-3C">3c</A>
Bolm C.
Kahmann JD.
Moll G.
Tetrahedron Lett.
1997,
38:
1169
<A NAME="RG00205ST-3D">3d</A>
Bolm C.
Moll G.
Kahmann JD.
Chem. Eur. J.
2001,
7:
1118
<A NAME="RG00205ST-3E">3e</A>
Bolm C.
Müller D.
Hackenberger CPR.
Org. Lett.
2002,
4:
893
<A NAME="RG00205ST-3F">3f</A>
Bolm C.
Müller D.
Dalhoff C.
Hackenberger CPR.
Weinhold E.
Bioorg. Med. Chem. Lett.
2003,
13:
3207
For selected contibutions, see:
<A NAME="RG00205ST-4A">4a</A>
Reggelin M.
Heinrich T.
Angew. Chem. Int. Ed.
1998,
37:
2883 ; Angew. Chem.
1998, 110, 3005
<A NAME="RG00205ST-4B">4b</A>
Harmata M.
Hong X.
Barnes CL.
Tetrahedron Lett.
2003,
44:
7261
<A NAME="RG00205ST-4C">4c</A>
Koep S.
Gais H.-J.
Raabe G.
J. Am. Chem. Soc.
2003,
125:
13243
Reviews:
<A NAME="RG00205ST-5A">5a</A>
Harmata M.
Chemtracts
2003,
16:
660
<A NAME="RG00205ST-5B">5b</A>
Okamura H.
Bolm C.
Chem. Lett.
2004,
33:
482
<A NAME="RG00205ST-6">6</A>
Bolm C.
Müller J.
Schlingloff G.
Zehnder M.
Neuburger M.
J. Chem. Soc., Chem. Commun.
1993,
182
<A NAME="RG00205ST-7">7</A>
Bolm C.
Müller P.
Acta Chem. Scand.
1996,
50:
305
For further applications, see:
<A NAME="RG00205ST-8A">8a</A>
Bolm C.
Felder M.
Müller J.
Synlett
1992,
439
<A NAME="RG00205ST-8B">8b</A>
Bolm C.
Felder M.
Tetrahedron Lett.
1993,
34:
6041
<A NAME="RG00205ST-8C">8c</A>
Bolm C.
Seger A.
Felder M.
Tetrahedron Lett.
1993,
34:
8079
<A NAME="RG00205ST-8D">8d</A>
Bolm C.
Felder M.
Synlett
1994,
655
For Cu-catalyzed cycloaddition reactions, see:
<A NAME="RG00205ST-9A">9a</A>
Bolm C.
Simic O.
J. Am. Chem. Soc.
2001,
123:
3830
<A NAME="RG00205ST-9B">9b</A>
Bolm C.
Martin M.
Simic O.
Verrucci M.
Org. Lett.
2003,
5:
427
For Pd-catalyzed allylic alkylations, see:
<A NAME="RG00205ST-10A">10a</A>
Bolm C.
Simic O.
Martin M.
Synlett
2001,
12:
1878
<A NAME="RG00205ST-10B">10b</A>
Harmata M.
Ghosh SK.
Org. Lett.
2001,
3:
3321
<A NAME="RG00205ST-11">11</A>
Bolm C.
Verrucci M.
Simic O.
Cozzi PG.
Raabe G.
Okamura H.
Chem. Commun.
2003,
2826
<A NAME="RG00205ST-12">12</A>
Langner M.
Bolm C.
Angew. Chem. Int. Ed.
2004,
43:
5984 ; Angew. Chem.
2004, 116, 6110
For the Pd-catalyzed coupling, see:
<A NAME="RG00205ST-13A">13a</A>
Bolm C.
Hildebrand JP.
Tetrahedron Lett.
1998,
39:
5731
<A NAME="RG00205ST-13B">13b</A>
Bolm C.
Hildebrand JP.
J. Org. Chem.
2000,
65:
169
<A NAME="RG00205ST-13C">13c</A>
Bolm C.
Hildebrand JP.
Rudolph J.
Synthesis
2000,
911
<A NAME="RG00205ST-14">14</A>For the Cu-mediated coupling, see:
<A NAME="RG00205ST-14">14</A>
Cho GY.
Remy P.
Jansson J.
Moessner C.
Bolm C.
Org. Lett.
2004,
6:
3293
For examples of highly enantioselective carbonyl-ene reaction of olefins to ethyl
glyoxalate or methyl pyruvate, see:
<A NAME="RG00205ST-15A">15a</A>
Maruoka K.
Hoshino Y.
Shirasaki T.
Yamamoto H.
Tetrahedron Lett.
1988,
29:
3967
<A NAME="RG00205ST-15B">15b</A>
Mikami K.
Terada M.
Nakai T.
J. Am. Chem. Soc.
1990,
112:
3949
<A NAME="RG00205ST-15C">15c</A>
Mikami K.
Pure Appl. Chem.
1996,
68:
639
<A NAME="RG00205ST-15D">15d</A>
Evans DA.
Tregay SW.
Burgey CS.
Paras NA.
Vojkovsky T.
J. Am. Chem. Soc.
2000,
122:
7936
<A NAME="RG00205ST-15E">15e</A>
Yuan Y.
Zhang X.
Ding K.
Angew. Chem. Int. Ed.
2003,
42:
5478 ; Angew. Chem. 2003, 115, 5636
<A NAME="RG00205ST-15F">15f</A>
Guo H.
Wang X.
Ding K.
Tetrahedron Lett.
2004,
45:
2009
<A NAME="RG00205ST-15G">15g</A> Reviews:
Mikami K.
Shimizu M.
Chem. Rev.
1992,
92:
1021
<A NAME="RG00205ST-15H">15h</A> See also:
Mikami K.
Terada M. In Comprehensive Asymmetric Catalysis
Vol. III:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
p.1143
<A NAME="RG00205ST-15I">15i</A>
Dias LC.
Curr. Org. Chem.
2000,
4:
305
<A NAME="RG00205ST-16">16</A>
Coppola GM.
Schuster HF.
α-Hydroxy Acids in Enantioselective Syntheses
VCH;
Weinheim:
1997.
<A NAME="RG00205ST-17">17</A>
Bolm C.
Martin M.
Gescheidt G.
Palivan C.
Neshchadin D.
Bertagnolli H.
Feth MP.
Schweiger A.
Mitrikas G.
Harmer J.
J. Am. Chem. Soc.
2003,
125:
6222
<A NAME="RG00205ST-18">18</A>
A pronounced effect of ortho-alkoxy groups was observed in hetero-Diels-Alder reactions catalyzed by copper complexes
bearing N-quinolyl sulfoximines. For details, see ref. 11.
<A NAME="RG00205ST-19">19</A>
Experimental Procedure.
In a dried Schlenk-flask under an argon atmosphere, CuCl2 (6.7 mg, 0.05 mmol) was suspended in dry CH2Cl2 (2 mL) and then treated with AgClO4 (20.7 mg, 0.1 mmol). The mixture was stirred for 60 min at r.t. under exclusion of
light and subsequently, aminosulfoximine 1a or 1g (0.05 mmol) was added. Stirring of the resulting blue suspension was continued for
another 30 min followed by the addition of the enophile (0.5 mmol) and the olefin
(5-20 equiv). After stirring for 48 h at r.t., the mixture was diluted with Et2O (50 mL) and filtered through a plug of silica gel. The solvent was removed under
reduced pressure, and the corresponding product was purified by column chromatography
(pentane-EtOAc, 15:1 for 9a and 9c, 10:1 for 9b) and obtained as colorless oil.
<A NAME="RG00205ST-20">20</A>
Unfortunately, 9b was obtained as a mixture with enophile 7b, which was inseparable by column chromatography. Use of (chiral) HPLC, however, allowed
the determination of the enantiomeric ratio of 9b (80% ee). The ‘yield’ of 9b was then estimated from the NMR spectra (44%).