Synlett 2005(1): 167-169  
DOI: 10.1055/s-2004-836045
LETTER
© Georg Thieme Verlag Stuttgart · New York

1,2-Metallate Rearrangements of α-Alkoxyalkyl Cuprates

Krzysztof Jarowicki, Philip J. Kocienski*
School of Chemistry, Leeds University, Leeds LS2 9JT, UK
e-Mail: p.kocienski@chemistry.leeds.ac.uk;
Further Information

Publication History

Received 12 October 2004
Publication Date:
29 November 2004 (online)

Abstract

α-Alkoxylalkyl cuprates undergo 1,2-metallate rearrangement to give secondary alkyl cuprates.

    References

  • 1 Kocienski P. Barber C. Pure Appl. Chem.  1990,  62:  1933 
  • 2 Kocienski PJ. In Organic Synthesis via Organometallics   Enders D. Gais H.-J. Keim W. Verlag Vieweg; Wiesbaden: 1993.  p.203-223  
  • 3 Friesen RW. J. Chem. Soc., Perkin Trans. 1  2001,  1969 
  • 4 Kocienski P. Wadman S. Cooper K. J. Am. Chem. Soc.  1989,  111:  2363 
  • 5 Milne JE. Jarowicki K. Kocienski PJ. Alonso J. Chem. Commun.  2002,  426 
  • 6 Pommier A. Stepanenko V. Jarowicki K. Kocienski PJ. J. Org. Chem.  2003,  68:  4008 
  • 7 Jarowicki K. Kocienski PJ. Qun L. Org. Synth.  2002,  79:  11 
  • 9 Sawyer JS. Kucerovy A. Macdonald TL. McGarvey GJ. J. Am. Chem. Soc.  1988,  110:  842 
  • 10 Helmke H. Hoppe D. Synlett  1995,  978 
  • 11 Compounds 14a and 14b were prepared the same way as the corresponding tribenzyl derivatives: Christopher JA. Kocienski PJ. Procter MJ. Synlett  1998,  425 
  • 13 Although the reaction of organocuprates with alkyl iodides may involve the formation of radicals, tosylates are considered to react strictly according to an SN2 mechanism: Alkylations of Nonstabilised Carbanions; Klunder JM. Posner GH. Comprehensive Organic Synthesis   Vol. 3:  Trost BM. Fleming I. Pergamon Press; Oxford: 1991.  p.207 
  • 14 The β-2-deoxyglucosylcopper(I) reagent is configurationally stable at 0 °C but the α-2-deoxyglucosyl-copper(I) rearranges to the β-anomer at 0 °C: Hutchinson DK. Fuchs PL. J. Am. Chem. Soc.  1987,  109:  4930 
  • 15 Periasamy MP. Walborsky HM. J. Am. Chem. Soc.  1975,  97:  5930 
  • 16 Linderman RJ. Griedel BD. J. Org. Chem.  1990,  55:  5428 
  • 17 Linderman RJ. Griedel BD. J. Org. Chem.  1991,  56:  5491 
  • 18 Bergbreiter DE. Whitesides GM. J. Am. Chem. Soc.  1974,  96:  4937 
  • 19 Whitesides GM. San Filippo J. Stredronsky ER. Casey CP. J. Am. Chem. Soc.  1969,  91:  6542 
  • 20 Yamamoto H. Kitatani K. Hiyama T. Nozaki H. J. Am. Chem. Soc.  1977,  99:  5816 
  • 21 Nakamura E. Isaka M. Matsuzawa S. J. Am. Chem. Soc.  1988,  110:  1297 
  • 22 Boudier A. Hupe E. Knochel P. Angew. Chem. Int. Ed.  2000,  39:  2294 
  • 23 Hupe E. Knochel P. Angew. Chem. Int. Ed.  2001,  40:  3022 
  • 24 Rychnovsky SD. Buckmelter AJ. Dahanukar VH. Skalitzky DJ. J. Org. Chem.  1999,  64:  6849 
  • 25 Matteson DS. Tetrahedron  1998,  54:  10555 
  • 26 Hoppe D. Hense T. Angew. Chem., Int. Ed. Engl.  1997,  36:  2283 
8

We coined the term 1,2-metallate rearrangement to describe a large class of reactions involving nucleophlic displacement reactions of electrophilic carbenoids (see ref. 1).

12

Compounds 17a and 17b were converted into the corresponding methyl ethers 18a and 18b and their structures determined by stereoselective synthesis.

27

Selected Spectroscopic Data for Compounds 7, 11, 13, 18a and 18b: Compound 7: IR (neat): 3334, 3076, 2956, 2927, 2860, 1639, 1589, 1456 cm-1. 1H NMR (500 MHz, CDCl3): δ = 5.78 (1 H, ddt, J = 16.7, 9.8, 7.3 Hz, H2C=CH), 5.05-4.97 (2 H, m, H 2C=CH), 3.64 (2 H, q, J = 6.4 Hz, CH 2OH), 2.10-2.00 (2 H, m, CH 2CH=CH2), 1.61-1.53 (2 H, m, C2H2), 1.46-1.38 (1 H, m, C4H), 1.35-1.21 (9 H, m, OH, 4 × CH2), 0.90 (3 H, t, J = 6.8 Hz, CH3). 13C NMR (75 MHz, CDCl3): δ = 137.5 (H2C=CH), 115.9 (H2 C=CH), 63.5 (C1H2), 38.2 (CH2CH=CH2), 37.3 (C4H), 33.1 (CH2CH2CH2CH3), 30.1 (C2H2), 29.4 (C3H2), 29.0 (CH2CH2CH3), 23.2 (CH2CH3), 14.3 (CH3). HRMS (ES): m/z calcd for C11H23O [M + H]+: 171.1749. Found: 171.1751.
Compound 11: IR (neat): 3336, 3076, 2927, 2859, 1640, 1458 cm-1. 1H NMR (500 MHz, CDCl3): δ = 5.77 (1 H, ddt, J = 17.1, 10.3, 7.0 Hz, H2C=CH), 5.03-4.96 (2 H, m, H 2C=CH), 3.64 (2 H, t, J = 6.5 Hz, CH 2OH), 2.03 (2 H, t, J = 6.0 Hz, CH 2CH=CH2), 1.55 (2 H, app quintet, J = 6.5 Hz, C2H2), 1.46-1.20 (12 H, m, OH, C5H, 5 × CH2), 0.89 (3 H, t, J = 6.5 Hz, CH3). 13C NMR (75 MHz, CDCl3): δ = 137.7 (H2C=CH), 115.8 (H2 C=CH), 63.2 (C1H2), 38.2 (CH2CH=CH2), 37.5 (C5H), 33.3 (CH2), 33.3 (CH2), 33.2 (CH2), 29.1 (CH2CH2CH3), 23.2 (CH2), 23.0 (CH2), 14.3 (CH3). HRMS (ES): m/z calcd for C12H24ONa [M + Na]+: 207.1725. Found: 207.1719.
Compound 13: IR (neat): 3075, 2928, 2858, 1639, 1589, 1508 cm-1. 1H NMR (500 MHz, CDCl3): δ = 6.40 (2 H, s, 2 ArH), 5.80 (1 H, ddt, J = 17.1, 10.3, 6.8 Hz, H2C=CH), 4.92-4.83 (2 H, m, H 2C=CH), 3.86 (6 H, s, 2 m-CH3O), 3.83 (3 H, s, p-CH3O), 2.56 (2 H, dd, J = 9.4, 6.4 Hz, CH 2Ar), 2.11 (2 H, t, J = 6.4 Hz, CH 2CH=CH2), 1.48-1.37 (2 H, m, CH 2CH2Ar), 1.35-1.26 (1 H, m, CH), 1.22-1.08 (6 H, m, 3 × CH2), 0.91 (3 H, t, J = 6.8 Hz, CH3). 13C NMR (75 MHz, CDCl3): δ = 153.1 (2 COCH3, Ar ring), 139.0 (C, Ar ring), 137.4 (H2C=CH), 136.0 (COCH3, Ar ring), 116.0 (H2 C=CH), 105.2 (2 CH, Ar ring), 61.0 (CH3O), 56.1 (2 CH3O), 38.1 (CH2CH=CH2), 37.2 (CHCH2CH=CH2), 35.4 (CH2CH2Ar), 33.7 (CH2Ar), 33.1 (CH2CH2CH2CH3), 29.0 (CH2CH2CH3), 23.2 (CH2CH3), 14.3 (CH3). HRMS (ES): m/z calcd for C19H31O3 [M + H]+: 307.2273. Found: 307.2281.
Compound 18a: [α]D +12.3 (c 0.70, CHCl3). IR (neat): 2955, 2927, 2826, 1459, 1378, 1186, 1103 cm-1. 1H NMR (500 MHz, CDCl3): δ = 3.69 (1 H, dd, J = 10.7, 2.6 Hz, C1H AHB), 3.50 (1 H, dd, J = 10.9, 3.6 Hz, C1HA H B), 3.50-3.36 (2 H, m, C2H and C4H), 3.46 (3 H, s, CH3O), 3.42 (3 H, s, CH3O), 3.40 (3 H, s, CH3O), 3.39 (3 H, s, CH3O), 3.24 (1 H, dd, J = 7.7, 3.0 Hz, C3H), 1.65 (1 H, ddd, J = 13.3, 7.7, 6.0 Hz, C5H AHB), 1.62-1.53 (1 H, m, C6H), 1.37-1.10 (7 H, m, C5HA H B and 3 × CH2), 0.92 (3 H, d, J = 6.4 Hz, CH 3C6H), 0.89 (3 H, t, J = 6.4 Hz, C10H3). 13C NMR (75 MHz, CDCl3): δ = 81.7 (C3H), 79.8 (C2H), 78.4 (C4H), 70.3 (C1H2), 61.0 (CH3O), 59.2 (CH3O), 58.8 (CH3O), 57.5 (CH3O), 38.5 (C5H2), 37.3 (C7H2), 29.5 (C6H), 29.3 (C8H2), 23.2 (C9H2), 20.1 (CH3C6H), 14.3 (C10H3). HRMS (ES): m/z calcd for C15H32O4Na [M + Na]+: 299.2198. Found: 299.2190.
Compound 18b: IR (neat): 2955, 2927, 2826, 1462, 1377, 1186, 1103 cm-1. 1H NMR (500 MHz, CDCl3): δ = 3.72 (1 H, dd, J = 10.3, 2.1 Hz, C1H AHB), 3.51 (1 H, dd, J = 10.7, 3.4 Hz, C1HA H B), 3.49-3.36 (2 H, m, C2H and C4H), 3.46 (3 H, s, CH3O), 3.42 (3 H, s, CH3O), 3.40 (3 H, s, CH3O), 3.37 (3 H, s, CH3O), 3.26 (1 H, dd, J = 7.7, 2.1 Hz, C3H), 1.59 (1 H, ddd, J = 13.3, 8.1, 4.7 Hz, C5H AHB), 1.57-1.46 (1 H, m, C6H), 1.42 (1 H, ddd, J = 13.7, 8.5, 6.0 Hz, C5HA H B), 1.39-1.13 (6 H, m, 3 × CH2), 0.91 (3 H, d, J = 6.4 Hz, CH 3C6H), 0.89 (3 H, t, J = 6.8 Hz, C10H3). 13C NMR (75 MHz, CDCl3): δ = 80.3 (C3H), 79.6 (C2H), 78.4 (C4H), 70.2 (C1H2), 61.0 (CH3O), 59.2 (CH3O), 58.0 (CH3O), 57.6 (CH3O), 37.5 (C7H2), 37.1 (C5H2), 29.5 (C6H), 29.3 (C8H2), 23.1 (C9H2), 20.2 (CH3C6H), 14.3 (C10H3). HRMS (ES): m/z calcd for C15H32O4Na [M + Na]+: 299.2198. Found: 299.2197.