Subscribe to RSS
DOI: 10.1055/s-2004-835660
Condensation of Chromone-3-carboxaldehyde with Phenylacetic Acids: An Efficient Synthesis of (E)-3-Styrylchromones
Publication History
Publication Date:
10 November 2004 (online)

Abstract
An efficient and diastereoselective synthetic method for preparing (E)-3-styrylchromones has been developed by the reaction of chromone-3-carboxaldehyde with phenylacetic acids in the presence of potassium tert-butoxide under classical heating conditions or microwave irradiation. The Knoevenagel-type reaction followed by a decarboxylation was faster under microwave conditions.
Key words
chromone-3-carboxaldehyde - phenylacetic acids - condensation - microwave irradiation - (E)-3-styrylchromones
- 1
Sabitha G. Aldrichimica Acta 1996, 29: 15 - 2
Karale BK.Chavan VP.Hangarge RV.Mane AS.Gill CH.Shingare MS. Indian J. Heterocycl. Chem. 2001, 11: 81 - 3
Sonawane SA.Chavan VP.Shingare MS.Karale BK. Indian J. Heterocycl. Chem. 2002, 12: 65 - 4
Karale BK.Gill CH.Shingare MS. Indian J. Heterocycl. Chem. 2003, 12: 267 -
5a
Doria G.Romeo C.Forgione A.Sberze P.Tibolla N.Corno ML.Cruzzola G.Cadelli G. Eur. J. Med. Chem. 1979, 14: 347 -
5b
Gerwick WH.Lopez A.Van Duyne GD.Clardy J.Ortiz W.Baez A. Tetrahedron Lett. 1986, 27: 1979 -
5c
Gerwick WH. J. Nat. Prod. 1989, 52: 252 -
5d
Brion JD,Le Baut G,Zammattio F,Pierre A,Atassi G, andBelachmi L. inventors; Eur. Pat. Appl. EP 454,587. ; Chem Abstr. 1992, 116, 106092K -
5e
Desideri N.Conti C.Mastropaolo F. Antiviral Chem. Chemother. 2000, 11: 373 -
5f
Peixoto F.Barros AIRNA.Silva AMS. J. Biochem. Mol. Toxicol. 2002, 16: 220 -
5g
Fernandes E.Carvalho M.Carvalho F.Silva AMS.Santos CMM.Pinto DCGA.Cavaleiro JAS.Bastos ML. Arch. Toxicol. 2003, 77: 500 -
5h
Filipe P.Silva AMS.Morlière P.Brito CM.Patterson LK.Hug GL.Silva JN.Cavaleiro JAS.Mazière J.-C.Freitas JP.Santus R. Biochem. Pharmacol. 2004, 67: 2207 -
6a
Price WA.Silva AMS.Cavaleiro JAS. Heterocycles 1993, 36: 2601 -
6b
Pinto DCGA.Silva AMS.Cavaleiro JAS. J. Heterocycl. Chem. 1996, 33: 1887 -
6c
Silva AMS.Pinto DCGA.Tavares HR.Cavaleiro JAS.Jimeno ML.Elguero J. Eur. J. Org. Chem. 1998, 2031 -
6d
Pinto DCGA.Silva AMS.Cavaleiro JAS. New J. Chem. 2000, 24: 85 - 7
Davies SG.Mobbs BE.Goodwin CJ. J. Chem. Soc., Perkin Trans. 1 1987, 2597 - 8
Alonso R.Brossi A. Tetrahedron Lett. 1988, 29: 735 - 9
Silva AMS.Cavaleiro JAS.Elguero J. Liebigs Ann. Recl. 1997, 2065 - 10
Sandulache A.Silva AMS.Pinto DCGA.Almeida LMPM.Cavaleiro JAS. New J. Chem. 2003, 27: 1592 -
13a
Xu Y.Guo Q.-X. Heterocycles 2004, 63: 903 -
13b
Díaz-Ortiz A.Elguero J.Foces-Foces C.de la Hoz A.Moreno A.Mateo MC.Sánchez-Migallón A.Valiente G. New J. Chem. 2004, 28: 95 -
13c Selected reviews:
Caddick S. Tetrahedron 1995, 51: 10403 -
13d
Strauss CR.Trainor RW. Aust. J. Chem. 1995, 48: 1665 -
13e
Galema SA. Chem. Soc. Rev. 1997, 26: 233 -
13f
Loupy A.Petit A.Hamelin J.Texier-Boullet F.Jacqualt P.Mathe D. Synthesis 1998, 1213 -
13g
Varma RS. Green Chem. 1999, 43 -
13h
Varma RS. Tetrahedron 2002, 58: 1235 - 17
Gribble GW.Kelly WJ. Tetrahedron Lett. 1985, 26: 3779
References
(E)-3-Styrylchromones 3a,b,d were shown to possess spectroscopic and analytical data identical to those previously reported.10
12Physical Data of ( E )-4′-Trifluoromethyl-3-styrylchromone (3c): Mp 206-207 °C. 1H NMR (300.13 MHz, CDCl3): δ = 7.02 (d, 1 H, J = 16.3 Hz, H-α), 7.45 (t, 1 H, J = 7.8, 8.0 Hz, H-6), 7.49 (d, 1 H, J = 7.8 Hz, H-8), 7.60 (m, 4 H, H-2′,3′,5′,6′), 7.69 (dt, 1 H, J = 7.8, 7.8, 1.6 Hz, H-7), 7.76 (d, 1 H, J = 16.3 Hz, H-β), 8.13 (s, 1 H, H-2), 8.30 (dd, 1 H, J = 8.0, 1.6 Hz, H-5). 13C NMR (75.47 MHz, CDCl3): δ = 118.1 (C-8), 121.2 (C-3), 121.7 (C-α), 124.1 (C-10), 124.2 (q, J = 271.8 Hz, CF3), 125.5 (C-6), 126.3 (C-5), 125.6 (q, J = 3.9 Hz, C-3′,5′), 126.7 (C-2′,6′), 129.4 (q, J = 32.5 Hz, C-4′), 130.4 (C-β), 133.8 (C-7), 140.9 (C-1′), 154.0 (C-2), 155.7 (C-9), 176.6 (C-4). 19F NMR (300.13 MHz, CDCl3; ref. C6F6): δ = -85.5 (s, CF 3). Anal. Calcd for C18H11O2F3: C, 68.36; H, 3.51. Found: C, 68.04; H, 3.22.
14Typical Experimental Procedure under Classical Heating Conditions: A mixture of chromone-3-carboxaldehyde (1, 0.10 g, 5.74 × 10-1 mmol), the appropriate phenylacetic acid 2a-g (0.39 g, 2.87 mmol) and tert-BuOK (0.10 g, 8.61 × 10-1 mmol) in dry pyridine (15 mL) was refluxed until complete disappearance of 1. After that period the contents were cooled to r.t. and poured over H2O and ice. The mixture was acidified at pH 2 with a solution of HCl. The pale yellow precipitate was separated by filtration washed with H2O and purified by thin layer chromatography with a 7:3 mixture of CH2Cl2-light petroleum ether as eluent. The obtained residue was crystallised from EtOH giving 3-styrylchromones 3a-g in good yields (Table [3] ).
15
Physical Data of 3-Styrylchromones 3e-f
(E)-2′-Chloro-3-styrylchromone (3e): Mp 125.1-125.4 °C. 1H NMR (300.13 MHz, CDCl3): δ = 7.03 (dd, 1 H, J = 16.4, 0.5 Hz, H-α), 7.21 (ddd, 1 H, J = 7.5, 7.6, 1.8 Hz, H-5′), 7.28 (ddd, 1 H, J = 7.5, 7.7, 1.5 Hz, H-4′), 7.39 (dd, 1 H, J = 7.7 and 1.5 Hz, H-6′), 7.44 (ddd, 1 H, J = 7.6, 7.8, 0.9 Hz, H-6), 7.49 (dd, 1 H, J = 8.2, 0.9 Hz, H-8), 7.69 (ddd, 1 H, J = 7.6, 8.2, 1.7 Hz, H-7), 7.70 (dd, 1 H, J = 7.5, 1.8 Hz, H-3′), 7.92 (d, 1 H, J = 16.4 Hz, H-β), 8.19 (d, 1 H, J = 0.5 Hz, H-2), 8.32 (dd, 1 H, J = 7.8, 1.7 Hz, H-5). 13C NMR (75.47 MHz, CDCl3): δ = 118.1 (C-8), 121.5 (C-α), 121.8 (C-3), 124.1 (C-10), 125.4 (C-6), 126.3 (C-5), 126.6 (C-3′), 126.9 (C-4′), 127.3 (C-β), 128.9 (C-5′), 129.8 (C-6′), 133.5 (C-2′), 133.6 (C-7), 135.4 (C-1′), 153.2 (C-2), 155.9 (C-9), 176.5 (C-4). Anal. Calcd for C17H11O2Cl: C, 72.22; H, 3.92. Found: C, 71.99; H, 3.63.
(E)-2′-Trifluoromethyl-3-styrylchromone (3f): Mp 137.2-137.5 °C. 1H NMR (300.13 MHz, CDCl3): δ = 7.03 (d, 1 H, J = 16.1 Hz, H-α), 7.37 (t, 1 H, J = 7.6, 7.6 Hz, H-4′), 7.44 (dt, 1 H, J = 7.5, 7.5, 1.0 Hz, H-6), 7.49 (dd, 1 H, J = 8.4, 1.0 Hz, H-8), 7.80 (d, 1 H, J = 8.0 Hz, H-3′), 7.87 (dq, 1 H, J = 16.1, 2.4 Hz, H-β), 8.17 (dd, 1 H, J = 0.6 Hz, H-2). 13C NMR (75.47 MHz, CDCl3): δ = 118.1 (C-8), 122.5 (C-3), 122.5 (q, J = 273.9 Hz, CF3), 123.0 (C-α), 124.1 (C-10), 125.4 (C-6), 125.9 (q, 1 H, J = 5.7 Hz, C-β), 126.3 (C-5), 127.0 (q, J = 2.2 Hz, C-3′), 127.1 (C-6′), 127.5 (C-4′), 127.6 (q, J = 29.8, C-2′), 131.9 (C-5′), 133.7 (C-7), 136.3 (q, J = 1.7 Hz, C-1′), 153.3 (C-2), 155.9 (C-9), 176.5 (C-4).
19F NMR (300.13 MHz, CDCl3; ref. C6F6): δ = -82.9 (s, CF
3). Anal. Calcd for C18H11O2F3: C, 68.36; H, 3.51. Found: C, 68.66; H, 3.53.
(E)-2′-Nitro-3-styrylchromone (3g): Mp 194-195 °C. 1H NMR (300.13 MHz, CDCl3): δ = 7.08 (dd, 1 H, J = 16.3, 0.7 Hz, H-α), 7.43 (ddd, 1 H, J = 7.8, 7.7, 1.4 Hz, H-4′), 7.45 (ddd, 1 H, J = 7.7, 7.8, 1.0 Hz, H-6), 7.50 (dd, 1 H, J = 7.9, 1.0 Hz, H-8), 7.63 (ddd, 1 H, J = 7.7, 7.9, 1.4 Hz, H-5′), 7.70 (ddd, 1 H, J = 7.7, 7.9, 1.7 Hz, H-7), 7.79 (dd, 1 H, J = 8.0, 1.4 Hz, H-6′), 7.91 (d, 1 H, J = 16.3 Hz, H-β), 7.98 (dd, 1 H, J = 8.0, 1.4 Hz, H-3′), 8.22 (d, 1 H, J = 0.7 Hz, H-2), 8.31 (dd, 1 H, J = 7.8, 1.7 Hz, H-5). 13C NMR (75.47 MHz, CDCl3): δ = 118.2 (C-8), 121.5 (C-3), 124.0 (C-α and C-10), 124.8 (C-3′), 125.5 (C-6), 126.0 (C-β), 126.3 (C-5′), 128.3 (C-4′), 128.6 (C-6′), 133.0 (C-1′), 133.2 (C-5), 133.8 (C-7), 147.9 (C-2), 153.4 (C-2′), 156.0 (C-9), 176.3 (C-4). Anal. Calcd for C17H11O4N: C, 69.62; H, 3.78; N, 4.78. Found: C, 69.57; H, 3.79; N, 4.75.
Typical Experimental Procedure under Microwave Irradiation: A mixture of chromone-3-carboxaldehyde (1, 0.10 g, 5.74 × 10-1 mmol), the appropriate phenylacetic acid 2a-g (0.39 g, 2.87 mmol) and tert-BuOK (0.10 g, 8.61 × 10-1 mmol) in dry pyridine (15 mL) was irradiated in a 100 mL PFA sealed vessel of a high-pressure rotor segment in an Ethos SYNTH microwave (Milestone Inc.), at a maximum temperature of 180 °C for 1 h (800 W of power). After that period the contents were cooled to r.t. and poured over H2O and ice. The mixture was acidified at pH 2 with a solution of HCl. The pale yellow precipitate was separated by filtration washed with H2O and purified by thin layer chromatography with a 7:3 mixture of CH2Cl2-light petroleum ether as eluent. The obtained residue was crystallised from EtOH giving 3-styrylchromones 3a-g in good yields (3a, 86.2%; 3b, 79.9%; 3c, 90.9%; 3d, 56.0%; 3e, 90.3%; 3f, 94.1%; 3g, 80.2%).