Synlett 2004(14): 2505-2508  
DOI: 10.1055/s-2004-834792
LETTER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Chiral γ-Amino-β-hydroxyphosphonate Derivatives from Unsaturated Phosphonates

Takehiro Yamagishi, Keiichi Fujii, Shiroshi Shibuya, Tsutomu Yokomatsu*
School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
Fax: +81(426)763239; e-Mail: yokomatu@ps.toyaku.ac.jp;
Further Information

Publication History

Received 31 July 2004
Publication Date:
20 October 2004 (online)

Abstract

γ-Amino-β-hydroxyphosphonates, useful intermediates for the synthesis of phosphonic acid analogues of carnitine, were prepared as their protected derivatives in an enantioselective manner from β,γ-unsaturated phosphonates through asymmetric ­dihydroxylation and subsequent regioselective amination via the cyclic sulfates.

    References

  • 1 Golay A. Swislocki ALM. Chen YD. Reaven GM. Metabolism  1987,  36:  692 
  • 2 McGarry JD. Brown NF. Eur. J. Biochem.  1997,  244:  1 
  • 3 For a review, see: Giannessi F. Drugs Future  2003,  28:  371 
  • 4a Giannessi F. Chiodi P. Marzi M. Minetti P. Pessotto P. De Angelis F. Tassoni E. Conti R. Giorgi F. Mabilia M. Dell’Uomo N. Muck S. Tinti MO. Carminati P. Arduini A. J. Med. Chem.  2001,  44:  2383 
  • 4b Giannessi F. Pessotto P. Tassoni E. Chiodi P. Conti R. De Angelis F. Dell’Uomo N. Catini R. Deias R. Tinti MA. Carminati P. Arduini A. J. Med. Chem.  2003,  46:  303 
  • 5a Ordóñez M. González-Morales A. Ruiz C. De la Cruz-Cordero R. Fernández-Zertuche M. Tetrahedron: Asymmetry  2003,  14:  1775 
  • 5b Mikolajczyk M. Luczak J. Kielbasinski P. J. Org. Chem.  2002,  67:  7872 
  • 5c Wróblewski AE. Halajewska-Wosik A. Eur. J. Org. Chem.  2002,  2758 
  • 5d Tadeusiak E. Krawiecka B. Michalski J. Tetrahedron Lett.  1999,  40:  1791 
  • 5e Ordóñez M. De la Cruz R. Fernández-Zertuche M. Muñoz-Hernández M.-A. Tetrahedron: Asymmetry  2002,  13:  559 
  • 5f Thomas AA. Sharpless KB. J. Org. Chem.  1999,  64:  8379 
  • 6 For a review, see: Kolb HC. van Nieuwenhze MS. Sharpless KB. Chem. Rev.  1994,  94:  2483 
  • 7a Yokomatsu T. Yoshida Y. Suemune K. Yamagishi T. Shibuya S. Tetrahedron: Asymmetry  1995,  6:  365 
  • 7b Yokomatsu T. Yamagishi T. Suemune K. Yoshida Y. Shibuya S. Tetrahedron  1998,  54:  767 
  • 8 Lohray and co-workers reported similar AD reactions independently. See: Lohray BB. Maji DK. Nandanan E. Indian J. Chem., Sect. B  1995,  34:  1023 
  • 9 Yokomatsu T. Yamagishi T. Sada T. Suemune K. Shibuya S. Tetrahedron  1998,  54:  781 
  • 12a Corey EJ. Guzman-Perez A. Noe MC. J. Am. Chem. Soc.  1995,  117:  10805 
  • 12b Corey EJ. Noe MC. Guzman-Perez A. J. Am. Chem. Soc.  1995,  117:  10817 
  • 13 Kobayashi and co-workers observed that a related AD of α-olefins with dibenzyl phosphonate showed higher enantioselectivity than the corresponding diethyl phosphonate. See: Kobayashi Y. William AD. Tokoro Y. J. Org. Chem.  2001,  66:  7903 
  • 15a Lohray BB. Synthesis  1992,  1035 
  • 15b Bittman R. Byun H.-S. He L. Tetrahedron  2000,  56:  7051 
  • 16 Gao Y. Sharpless KB. J. Org. Chem.  1988,  110:  7538 
10

The 1.4 g of AD-mix-α, purchased from Aldrich, was used for conversion of 1.0 mmol of the olefin, which contained 0.2 mol% of K2OsO4·2H2O and 1.0 mol% of chiral ligand (DHQ)2PHAL. However, an additional K2OsO4·2H2O (0.8 mol%) was critical for AD reactions of β,γ-unsaturated phosphonates since the AD reaction of 2b in the absence of the osmium salt resulted in slow reaction rates (20 h at 25 °C) and slight decrease in enantioselectivity (54% yield, 30% ee).

11

Compound 3c: oil; [α]D 26 -2.14 (c 1.03, MeOH). 1H NMR (400 MHz, CDCl3): δ = 7.97 (2 H, d, J = 8.8 Hz), 6.87 (2 H, d, J = 8.8 Hz), 4.38 (2 H, d, J = 5.8 Hz), 4.09 (4 H, q, J = 6.9 Hz), 4.05-4.00 (1 H, m), 3.87-3.85 (1 H, m), 3.82 (3 H, s), 2.22-1.96 (2 H, m), 1.29 (6 H, t, J = 7.0 Hz). 13C NMR (100 MHz, CDCl3): δ = 166.4, 163.5, 131.7, 122.2, 113.6, 72.4 (d, J PC = 14.9 Hz), 66.8 (d, J PC = 4.5 Hz), 65.5, 62.1 (d, J PC = 3.2 Hz), 55.4, 30.1 (d, J PC = 140.0 Hz), 16.3 (d, J PC = 5.9 Hz). 31P NMR (162 MHz, CDCl3): δ = 29.36. IR (neat): 3356, 1713, 1258, 1168 cm-1. ESI-MS: m/z = 399 [MNa+]. HRMS: m/z calcd for C16H25O8NaP [MNa+]: 399.1185. Found: 399.1185.

14

Compound 7b (for a sample of 100% ee): mp 93-95 °C; [α]D 22 -7.92 (c 1.01, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.39-7.32 (10 H, m), 5.12-4.96 (4 H, m), 3.70 (1 H, qd, J = 4.2, 14.9 Hz), 3.59 (1 H, td, J = 5.6, 11.3 Hz), 2.04-1.96 (2 H, m), 1.13 (3 H, d, J = 6.3 Hz). 13C NMR (100 MHz, CDCl3): δ = 136.0 (d, J PC = 5.5 Hz), 135.9 (d, J PC = 5.0 Hz), 128.7, 128.6, 128.6, 128.1, 128.0, 70.7 (d, J PC = 17.4 Hz), 70.4 (d, J PC = 5.6 Hz), 67.6 (d, J PC = 6.4 Hz), 30.5 (d, J PC = 139.6 Hz), 18.9. 31P NMR (162 MHz, CDCl3): δ = 31.91. IR (KBr): 3359, 2968, 1214 cm-1. ESI-MS: m/z = 351 [MH+]. HRMS: m/z calcd for C18H24O5P [MH+]: 351.1361. Found: 351.1352.

17

Compound 12: oil. 1H NMR (400 MHz, CDCl3): δ = 7.37-7.28 (10 H, m), 5.03 (2 H, dd, J = 9.1, 11.8 Hz), 4.95 (2 H, dd, J = 8.2, 11.8 Hz), 4.02-3.87 (1 H, m), 3.15-3.11 (1 H, m), 2.06-1.97 (2 H, m), 1.00 (3 H, d, J = 6.6 Hz), 0.91 (9 H, t, J = 7.9 Hz), 0.58 (6 H, q, J = 7.9 Hz). 13C NMR (100 MHz, CDCl3): δ = 136.2 (d, J PC = 5.4 Hz), 128.5-127.7 (aromatic), 71.6, 67.2 (d, J PC = 6.6 Hz), 67.1 (d, J PC = 6.5 Hz), 51.3 (d, J PC = 7.6 Hz), 30.1 (d, J PC = 138.0 Hz), 17.0, 6.8, 4.9. 31P NMR (162 MHz, CDCl3): δ = 30.81. ESI-MS: m/z = 464 [MH+]. HRMS: m/z calcd for C24H39NO4SiP [MH+]: 464.2386. Found: 464.2382.

18

The chemical structure of 12 was determined after the conversion into γ-amino-β-ketophosphonate 13 through tosylation, desilylation, and oxidation with PDC. In 1H the NMR spectrum (400 MHz, CDCl3) of 13, a signal ascribed to the Me group at the γ-position was observed at δ = 1.18 ppm as a doublet (J = 7.1 Hz) but not as a singlet corresponding to regioisomeric β-amino-γ-ketophosphonate (Scheme [7] ).

Scheme 7