References
<A NAME="RD19204ST-1A">1a</A>
Trost BM.
Indolese A.
J. Am. Chem. Soc.
1993,
115:
4361
<A NAME="RD19204ST-1B">1b</A>
Trost BM.
Indolese AF.
Müller TJJ.
Treptow B.
J. Am. Chem. Soc.
1995,
117:
615
<A NAME="RD19204ST-1C">1c</A>
Dérien S.
Ropartz L.
Le Paih J.
Dixneuf PH.
J. Org. Chem.
1999,
64:
3524
<A NAME="RD19204ST-1D">1d</A>
Trost BM.
Machacek M.
Schnaderbeck MJ.
Org. Lett.
2000,
2:
1761
<A NAME="RD19204ST-1E">1e</A>
Trost BM.
Toste FD.
Pinkerton AB.
Chem. Rev.
2001,
101:
2067
<A NAME="RD19204ST-1F">1f</A>
Trost BM.
Surivet J.-P.
Toste FD.
J. Am. Chem. Soc.
2001,
123:
2897
<A NAME="RD19204ST-1G">1g</A>
Trost BM.
Surivet J.-P.
Angew. Chem. Int. Ed.
2001,
40:
1468
<A NAME="RD19204ST-1H">1h</A>
Trost BM.
Pinkerton AB.
Toste FD.
Sperrle M.
J. Am. Chem. Soc.
2001,
123:
12504
<A NAME="RD19204ST-1I">1i</A>
Trost BM.
Chisholm JD.
Wrobleski ST.
Jung M.
J. Am. Chem. Soc.
2002,
124:
12420
<A NAME="RD19204ST-1J">1j</A>
Trost BM.
Shen HC.
Pinkerton AB.
Chem.-Eur. J.
2002,
8:
2341
<A NAME="RD19204ST-1K">1k</A>
Trost BM.
Machacek MR.
Angew. Chem. Int. Ed.
2002,
41:
4693
<A NAME="RD19204ST-2">2</A>
(1
Z
,4
E
)-(
R
)-1-Trimethylsilyl-2-(2′-methyl-3′-
tert
-butyldiphenylsilyloxy)-6-acetoxy-1,4-hexadiene. CpRu(MeCN)3PF6 (39 mg, 0.090 mmol) under Ar was treated with an acetone solution (2 mL) of 1-acetoxy-3-butene
(170 mg, 1.5 mmol) and (R)-1-(trimethylsilyl)-4-methyl-5-(tert-butyldiphenylsilyloxy)-1-pentyne (123 mg, 0.300 mmol). The yellow solution was stirred
at r.t. for 20 h. The reaction mixture was passed through a short plug of silica and
concentrated in vaccuo. The residue was purified by column chromatography (increasing
polarity from 1% to 10% EtOAc in petroleum spirit), which gave the title compound
(134 mg, 0.256 mmol, 85% yield) as a colorless oil. Rf (11% EtOAc in petroleum spirit): 0.67. [α]D
25 +1.1 (c 6.7, CH2Cl2). MS (ES+): m/z (%) = 463.28 (100) [M - OAc], 540.32 (23) [M + NH4
+], 545.29 (33) [M + Na+], 561.26 (12) [M + K+], 655.20 (33) [M + Cs+]. HRMS (ES+): m/z [M + Na+] calcd for C31H46O3NaSi2: 545.2883; found: 545.2904. 1H NMR (300 MHz, CDCl3): δ = 0.06 [9 H, s, (CH3)3Si], 0.86 (3 H, d, J = 6.0 Hz, CH3CH), 1.06 [9 H, s, (CH3)3CSi], 1.82-2.02 (2 H, m, CH3CH and CHCH2C=), 2.05 [3 H, s, CH3C(O)O], 2.27 (1 H, dd, J = 12.9, 4.8 Hz, CH3CH), 2.74 (2 H, d, J = 6.6 Hz, =CHCH2CH=), 3.47 (2 H, d, J = 6.0 Hz, CH2OSi), 4.52 (2 H, d, J = 6.3 Hz, CH2OAc), 5.23 (1 H, s, TMSCH), 5.54 (1 H, dt, J = 15.3, 6.3 Hz, AcOCH2CH=CH), 5.73 (1 H, dt, J = 15.6, 6.9 Hz, AcOCH2CH=CH), 7.36-7.44 (6 H, m, SiPh), 7.62-7.68 (4 H, m, SiPh). 13C NMR (75 MHz, CDCl3): δ = 0.8 (CH3), 16.4 (CH3), 19.5 (C), 21.2 (CH), 27.2 (CH3), 34.2 (CH3), 39.6 (CH2), 41.8 (CH2), 65.3 (CH2), 69.5 (CH2), 125.8 (CH), 126.8 (CH), 127.8 (CH), 129.8 (CH), 134.1 (C), 134.3 (CH), 135.9 (CH),
155.3 (C), 171.0 (C=O).
For examples of internal coordination directing β-hydrogen elimination in Alder-ene
reactions:
<A NAME="RD19204ST-3A">3a</A>
Slugovc C.
Mereiter K.
Schmid R.
Kirchner K.
Organometallics
1999,
18:
1011
<A NAME="RD19204ST-3B">3b</A>
Trost BM.
Tanoury GJ.
Lautens M.
Chan C.
MacPherson DT.
J. Am. Chem. Soc.
1994,
116:
4255
<A NAME="RD19204ST-4">4</A>
Whilst there are examples of other processes occurring when β-hydrogen elimination
is inhibited,5 under the mild conditions employed only starting materials are recovered.
<A NAME="RD19204ST-5A">5a</A>
Mitsudo T.
Zhang S.-W.
Nagao M.
Wantanabe Y.
J. Chem. Soc., Chem. Commun.
1991,
598
<A NAME="RD19204ST-5B">5b</A>
Trost BM.
Imi K.
Indolese AF.
J. Am. Chem. Soc.
1993,
115:
8831
<A NAME="RD19204ST-5C">5c</A>
Mirsudo T.
Naruse H.
Kondo T.
Ozaki Y.
Wantanabe Y.
Angew. Chem., Int. Ed. Engl.
1994,
33:
580
<A NAME="RD19204ST-5D">5d</A>
Trost BM.
Toste FD.
Shen H.
J. Am. Chem. Soc.
2000,
122:
2379
<A NAME="RD19204ST-6A">6a</A>
Jaouen G.
Vessieres A.
Buttler IS.
Acc. Chem. Res.
1993,
26:
361
<A NAME="RD19204ST-6B">6b</A>
Pearson AJ.
Park JG.
J. Org. Chem.
1992,
57:
1744
<A NAME="RD19204ST-6C">6c</A>
Pearson AJ.
Lee K.
J. Org. Chem.
1994,
59:
2304
<A NAME="RD19204ST-6D">6d</A>
Janetka JW.
Rich DH.
J. Am. Chem. Soc.
1995,
117:
10585
<A NAME="RD19204ST-6E">6e</A>
Pearson AJ.
Zhang P.
Lee K.
J. Org. Chem.
1996,
61:
6581
<A NAME="RD19204ST-6F">6f</A>
Pigge FC.
Coniglio JJ.
Curr. Org. Chem.
2001,
5:
757
For examples of catalytic deactivation of CpRu+ complexes by η6-arene coordination, see:
<A NAME="RD19204ST-7A">7a</A>
Trost BM.
Imi K.
Indolese AF.
J. Am. Chem. Soc.
1993,
115:
8831
<A NAME="RD19204ST-7B">7b</A>
Becker E.
Slugovc C.
Rüba E.
Standfest-Hauser C.
Mereiter K.
Schmid R.
Kirchner K.
J. Organomet. Chem.
2002,
649:
55
<A NAME="RD19204ST-7C">7c</A>
Rüba E.
Schmid R.
Kirchner K.
Calhourda MJ.
J. Organomet. Chem.
2003,
648:
204
<A NAME="RD19204ST-8A">8a</A>
For CpRu(η6-anisole)BF4: 1H NMR (d
6-acetone): δ = 5.51 (s, 5 H, CpH), 6.13-6.53 (m, 5 H, ArH).
<A NAME="RD19204ST-8B">8b</A>
Volkenau NA.
Bolesova IN.
Shulpina LS.
Kitaigorodskii AN.
Kravtsov DM.
J. Organomet. Chem.
1985,
288:
341