References
<A NAME="RD15904ST-1">1</A>
Bhattia SH.
Davies GM.
Hitchcock PB.
Loakes D.
Young DW.
J. Chem. Soc., Perkin Trans. 1
1999,
2449
<A NAME="RD15904ST-2">2</A>
Capps NK.
Davies GM.
Loakes D.
McCabe RW.
Young DW.
J. Chem. Soc., Perkin Trans. 1
1991,
3077
<A NAME="RD15904ST-3">3</A>
Confalone PN.
Pizzalato G.
Baggiolini EG.
Lollar D.
Uskokovic MR.
J. Am. Chem. Soc.
1975,
5936
<A NAME="RD15904ST-4">4</A>
Barco A.
Benetti S.
Casolari A.
Pollini GP.
Spalluto G.
Tetrahedron Lett.
1990,
31:
4917
<A NAME="RD15904ST-5">5</A>
Yanagida M.
Hashimoto K.
Ishida M.
Shinozaki H.
Shirahama H.
Tetrahedron Lett.
1989,
30:
3799
<A NAME="RD15904ST-6">6</A>
Clough SC.
Solomon R.
Crews E.
Jaques L.
Johnson A.
Forehand J.
J. Heterocycl. Chem.
1982,
19:
1489
<A NAME="RD15904ST-7">7</A>
Bachi MD.
Goldberg O.
Gross A.
Vaya J.
J. Org. Chem.
1989,
45:
1481
<A NAME="RD15904ST-8">8</A>
Evers R.
Michalik M.
J. Prakt. Chem.
1991,
333:
699
<A NAME="RD15904ST-9A">9a</A>
Confalone PN.
Pizzolato G.
Baggiolini EG.
Lollar D.
Uskokovic MR.
J. Am. Chem. Soc.
1977,
99:
7020
<A NAME="RD15904ST-9B">9b</A>
Takata T.
Tamura Y.
Ando W.
Tetrahedron
1985,
41:
2135
<A NAME="RD15904ST-10">10</A>
Hoppe D.
Liebigs Ann. Chem.
1976,
2185
<A NAME="RD15904ST-11">11</A>
Yoo D.
Oh JS.
Lee D.-W.
Kim YG.
J. Org. Chem.
2003,
68:
2979
<A NAME="RD15904ST-12">12</A>
Capps NK.
Davies GM.
Loakes D.
Young DW.
Tetrahedron
1992,
48:
10149
For one-pot reactions of N-nucleophiles and isocyanates, see:
<A NAME="RD15904ST-13A">13a</A>
Khattak I.
Ketcham R.
Schaumann E.
Adiwidjaja G.
J. Org. Chem.
1985,
50:
3431
<A NAME="RD15904ST-13B">13b</A> For one-pot reactions of allenyl isothiocyanates, see:
Banert K.
Hückstädt H.
Vrobel K.
Angew. Chem., Int. Ed. Engl.
1992,
31:
90 ; Angew. Chem. 1992, 104, 72
For cyclizations of dianions with epibromohydrin, see:
<A NAME="RD15904ST-14A">14a</A>
Langer P.
Freifeld I.
Chem.-Eur. J.
2001,
7:
565 ; and references cited therein
<A NAME="RD15904ST-14B">14b</A>
Langer P.
Freifeld I.
Org. Lett.
2001,
3903 ; and references cited therein
For one-pot reactions of arylmethylnitriles with isothiocyanates and 1,2-dibromoethane
and chloroacetic chloride, see:
<A NAME="RD15904ST-15A">15a</A>
Bukowski L.
Pharmazie
2001,
56:
23
<A NAME="RD15904ST-15B">15b</A>
Rudorf W.-D.
Tetrahedron
1978,
34:
725
<A NAME="RD15904ST-15C">15c</A> For one-pot reactions of arylmethylnitriles with isothiocyanates and ethyl 2-chloro-2-oxoacetate,
see:
Albrecht U.
Langer P.
Synlett
2004,
1963
<A NAME="RD15904ST-16A">16a</A>
Böhme H.
Stammberger W.
Liebigs Ann. Chem.
1971,
56
<A NAME="RD15904ST-16B">16b</A>
Kondo K.
Tunemoto D.
Tetrahedron Lett.
1975,
17:
1397
<A NAME="RD15904ST-16C">16c</A>
Eisch JJ.
Dua SK.
Behrooz M.
J. Org. Chem.
1985,
50:
3676
<A NAME="RD15904ST-16D">16d</A>
Hendrickson JJ.
Boudreaux GJ.
Palumbo PS.
J. Am. Chem. Soc.
1986,
108:
2358
<A NAME="RD15904ST-16E">16e</A>
McCrombie SW.
Shankar BB.
Ganguly AK.
Padwa A.
Bullock WH.
Dyszlewski AD.
Tetrahedron Lett.
1987,
28:
4127
<A NAME="RD15904ST-16F">16f</A>
Thomson MW.
Handwerker BM.
Katz SA.
Belser RB.
J. Org. Chem.
1988,
53:
906
<A NAME="RD15904ST-17">17</A> Dilithiated arylacetonitriles reside as base-associated monoanions. For a review
of the structure of lithiated and dilithiated nitriles and sulfones, see:
Boche G.
Angew. Chem., Int. Ed. Engl.
1989,
28:
277 ; Angew. Chem.
1989, 101, 286
<A NAME="RD15904ST-18">18</A>
Typical Procedure for the Preparation of (4-Hydroxymethyl)thiazolidines: To a THF solution (10 mL) of 4-tolylmethylnitrile 1c (0.262 g, 2.0 mmol) was added n-BuLi (4.4 mmol, 1.6 M) at 0 °C. After stirring for 1 h, ethylisothiocyanate (2d, 0.174 g, 2.0 mmol) was added and the solution was stirred for 1 h at 0 °C. Subsequently,
epibromohydrin (0.274 g, 2.0 mmol) was added. After warming to 20 °C during 16 h,
an aqueous solution of HCl (20 mL, 1 M) was added. The organic and the aqueous layers
were separated and the latter was extracted with EtOAc (3 × 30 mL). The combined organic
layers were extracted with brine (30 mL), dried (Na2SO4), filtered and the solvent of the filtrate was removed in vacuo. The residue was
purified by chromatography (silica gel, hexane-EtOAc, 3:2) to give 4n as colorless oil (0.491 g, 90%, E/Z = 5:1). 1H NMR (300 MHz, CDCl3, signals are given for both E/Z isomers): δ = 0.97, 1.27 (2 × t, 3
J = 7 Hz, 3 H, CH3), 2.28, 2.30 (2 × s, 3 H, CH3), 2.94-3.22 (m, 3 H, CH, CH2), 3.56-3.66 (m, 2 H, CH2), 3.94-4.08 (m, 2 H, CH2), 7.09 (d, 3
J = 8 Hz, 2 H, CH), 7.28 (d, 3
J = 8 Hz, 2 H, CH). 13C NMR (75 MHz, CDCl3, signals are given for both E/Z isomers): δ = 12.53, 13.43, 20.74, 21.89 (CH3), 27.49, 29.39, 43.93, 45.15, 60.30, 60.87 (CH2), 68.48, 68.57 (CH), 70.88, 73.87, 121.24, 123.47 (C), 127.87, 128.75, 128.76, 128.99
(CH), 130.62, 133.61, 135.78, 136.29, 161.23, 162.62 (C). IR (KBr): 3432 (s), 2975
(w), 2934 (m), 2873 (w), 2177 (s), 1645 (w), 1548 (s), 1461 (m), 1444 (m) cm-1. MS (EI, 70 eV): m/z (%) = 274 (100) [M+], 243 (84), 215 (46), 188 (14), 119 (33); the exact molecular mass for C15H18N2OS m/z = 274.1140 ± 2mD (M+) was confirmed by HRMS (EI, 70 eV). All new compounds gave satisfactory spectroscopic
and correct analytical and/or high resolution mass data.