References
<A NAME="RG05004ST-1">1</A>
Griller D.
Ingold KU.
Acc. Chem. Res.
1976,
9:
13
<A NAME="RG05004ST-2A">2a</A>
Gomberg M.
Chem. Rev.
1925,
1:
91
<A NAME="RG05004ST-2B">2b</A>
Ballester M.
Pure Appl. Chem.
1967,
15:
123
<A NAME="RG05004ST-2C">2c</A>
Laukamp H.
Nauta WT.
MacLean C.
Tetrahedron Lett.
1968,
9:
249
<A NAME="RG05004ST-2D">2d</A>
Carilla J.
Fajarí L.
Juliá L.
Riera J.
Viadel L.
Tetrahedron Lett.
1994,
35:
6529
<A NAME="RG05004ST-2E">2e</A>
Neumann WP.
Uzick W.
Zarkadis AK.
J. Am. Chem. Soc.
1986,
108:
3762
<A NAME="RG05004ST-2F">2f</A>
Neumann WP.
Stapel R.
Chem. Ber.
1986,
119:
2006
<A NAME="RG05004ST-2G">2g</A>
Sholle VD.
Rozantsev EG.
Russ. Chem. Rev.
1973,
42:
1011
<A NAME="RG05004ST-2H">2h</A>
McBride JM.
Tetrahedron
1974,
30:
2009
<A NAME="RG05004ST-3A">3a</A>
Mangini A.
Pedulli GF.
Tiecco M.
Tetrahedron Lett.
1968,
9:
4941
<A NAME="RG05004ST-3B">3b</A>
Mangini A.
Pedulli GF.
Tiecco M.
J. Heterocycl. Chem.
1969,
6:
271
<A NAME="RG05004ST-4">4</A>
Tzerpos NI.
Zarkadis AK.
Kreher RP.
Repas L.
Lehnig M.
J. Chem. Soc., Perkin Trans. 2
1995,
755
<A NAME="RG05004ST-5">5</A>
Katritzky A.
Yang B.
Dalal NS.
J. Org. Chem.
1998,
63:
1467
<A NAME="RG05004ST-6">6</A>
Alajarín M.
Vidal A.
Tovar F.
Targets Heterocycl. Syst.
2000,
4:
293 ; and references cited therein
<A NAME="RG05004ST-7A">7a</A>
Alajarín M.
Vidal A.
Ortín M.-M.
Tetrahedron Lett.
2003,
44:
3027
<A NAME="RG05004ST-7B">7b</A>
Alajarín M.
Vidal A.
Ortín M.-M.
Org. Biomol. Chem.
2003,
1:
4282
<A NAME="RG05004ST-7C">7c</A>
Alajarín M.
Vidal A.
Ortín M.-M.
Bautista D.
New J. Chem. in press
For a seminal paper in which the PRE was recognized see:
<A NAME="RG05004ST-8A">8a</A>
Fischer H.
J. Am. Chem. Soc.
1986,
108:
3925
<A NAME="RG05004ST-8B">8b</A> For the naming of the principle of PRE see:
Daikh BE.
Finke RG.
J. Am. Chem. Soc.
1992,
114:
2938
<A NAME="RG05004ST-8C">8c</A> For an excellent review on the PRE see:
Fischer H.
Chem. Rev.
2001,
101:
3581
<A NAME="RG05004ST-8D">8d</A> For examples of PRE in organic synthesis see:
Studer A.
Angew. Chem. Int. Ed.
2000,
39:
1108
<A NAME="RG05004ST-8E">8e</A>
Wetter C.
Jantos K.
Woithe K.
Studer A.
Org. Lett.
2003,
5:
2899
<A NAME="RG05004ST-8F">8f</A>
Studer A.
Chem.-Eur. J.
2001,
7:
1159
<A NAME="RG05004ST-8G">8g</A>
Leroi C.
Fenet B.
Couturier J.-L.
Guerret O.
Ciufolini MA.
Org. Lett.
2003,
5:
1079
<A NAME="RG05004ST-8H">8h</A>
Allen AD.
Fenwick MF.
Henry-Riyad H.
Tidwell TT.
J. Org. Chem.
2001,
66:
5759
<A NAME="RG05004ST-8I">8i</A>
Wetter C.
Studer A.
Chem. Commun.
2004,
174
<A NAME="RG05004ST-9">9</A>
Boivin J.
Fouquet E.
Schiano A.-M.
Zard SZ.
Tetrahedron
1994,
50:
1769
<A NAME="RG05004ST-10A">10a</A>
Walkington AJ.
Whiting DA.
Tetrahedron Lett.
1989,
30:
4731
<A NAME="RG05004ST-10B">10b</A>
Ahmad-Junan SA.
Walkington AJ.
Whiting DA.
J. Chem. Soc., Perkin Trans. 1
1992,
2313
<A NAME="RG05004ST-11">11</A>
Gutenberger G.
Steckhan E.
Blechert S.
Angew. Chem. Int. Ed.
1998,
37:
660
<A NAME="RG05004ST-12">12</A>
Mikami T.
Harada M.
Narasaka K.
Chem. Lett.
1999,
425
<A NAME="RG05004ST-13">13</A>
Comasseto JV.
Ferreira JTB.
Brandt CA.
Petragnani N.
J. Chem. Res., Synop.
1982,
212
For examples of aza-Wittig reactions between phosphazenes and ketenes see:
<A NAME="RG05004ST-14A">14a</A>
ref.
[7]
<A NAME="RG05004ST-14B">14b</A>
Alajarín M.
Vidal A.
Tovar F.
Ramírez de Arellano MC.
Cossío FP.
Arrieta A.
Lecea B.
J. Org. Chem.
2000,
65:
3633
<A NAME="RG05004ST-14C">14c</A>
Alajarín M.
Vidal A.
Ortín M.-M.
Synthesis
2002,
2393 ; and references cited therein
<A NAME="RG05004ST-15">15</A>
Pracejus H.
Wallura G.
J. Prakt. Chem.
1962,
19:
33
<A NAME="RG05004ST-16">16</A>
Taylor EC.
McKillop A.
Hawks GH.
Org. Synth.
1973,
52:
36
<A NAME="RG05004ST-17">17</A>
Typical Procedure: A solution of the corresponding ketenimine 8 (1.5 mmol) in anhyd benzene (100 mL) was heated under nitrogen at reflux temperature
and tris(trimethylsilyl)silane (0.56 g, 2.25 mmol) and AIBN (0.098 g, 0.6 mmol) were
added. Further additions of tris(trimethylsilyl)silane and AIBN were made as follows:
1) after 4 h since the first addition, tris(trimethylsilyl)silane (0.19 g, 0.75 mmol)
and AIBN (0.098 g, 0.6 mmol) and 2) 4 h later, tris(trimethylsilyl)silane (0.37 g,
1.5 mmol) and AIBN (0.098 g, 0.6 mmol). After 16 h since the last addition the solvent
was removed under reduced pressure and the crude material was chromatographed on
a silica gel column, using hexanes/EtOAc (9:1) as eluent.
1,4-Benzoxazine 9f: Rf = 0.48; yield 27%; colorless prisms (Et2O); mp 177-178 °C. IR (nujol): 2234, 1625, 1258, 1220, 1164, 1117, 1074, 1044, 964,
889, 827, 741, 707 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.23 (s, 3 H), 1.50 (s, 3 H), 3.39 (d, 1 H, J = 13.5 Hz), 4.28 (d, 1 H, J = 13.5 Hz), 6.79 (d, 1 H, J = 8.7 Hz), 7.11 (dd, 1 H, J = 8.7, 2.7 Hz), 7.41 (very broad s, 8 H), 7.61 (d, 1 H, J = 2.7 Hz), 7.91 (broad s, 2 H). 13C NMR (75 MHz, CDCl3): δ = 25.3, 27.6, 37.3 (s), 63.6, 64.2 (s), 116.7, 127.2 (s), 127.4, 127.7 (s), 128.3,
128.5, 128.6, 128.9, 130.0, 131.1, 133.9 (s), 136.4 (s), 137.0 (s), 145.2 (s), 164.9
(s). MS: m/z (relative intensity) = 402 (3) [M+ + 2], 400 (8) [M+], 332 (100). Anal. Calcd for C25H21ClN2O: C, 74.90; H, 5.28; N, 6.99. Found: C, 74.77; H, 5.21; N, 7.11.
1,4-Benzoxazine 10f: Rf = 0.36; yield 55%; colorless prisms (Et2O); mp 143-144 °C. IR (nujol): 2233, 1624, 1600, 1579, 1494, 1299, 1261, 1236, 1198,
1128, 971, 870, 819, 763, 709, 668 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.47 (s, 3 H), 1.51 (s, 3 H), 4.77 (d, 1 H, J = 11.7 Hz), 4.92 (d, 1 H, J = 11.7 Hz), 6.82 (d, 1 H, J = 8.7 Hz), 6.99 (dd, 1 H, J = 8.7, 2.4 Hz), 7.08-7.11 (m, 2 H), 7.15 (d, 1 H, J = 2.4 Hz), 7.16-7.19 (m, 2 H), 7.28-7.35 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 27.8, 28.9, 56.8 (s), 65.2, 118.3, 121.8 (s), 123.4, 124.7, 125.1 (s), 128.1,
128.2, 128.4, 128.5, 129.8, 130.6, 132.4 (s), 139.5 (s), 140.2 (s), 142.8 (s), 147.5
(s). MS: m/z (relative intensity) = 402 (2) [M+ + 2], 400 (5) [M+], 332 (100). Anal. Calcd for C25H21ClN2O: C, 74.90; H, 5.28; N, 6.99. Found: C, 74.76; H, 5.18; N, 7.08.
<A NAME="RG05004ST-18">18</A>
Crystallographic data for the structure 10a have been deposited with the Cambridge Crystallographic Data Centre as supplementary
publication number CCDC 229317. Copies of the data can be obtained on application
to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (e-mail: deposit@ccdc.cam.ac.uk).
For articles dealing with persistent nitrogen-centered radicals see:
<A NAME="RG05004ST-19A">19a</A>
Nakatsuji M.
Miura Y.
Teki Y.
J. Chem. Soc., Perkin Trans. 2
2001,
738
<A NAME="RG05004ST-19B">19b</A>
Miura Y.
Momoki M.
Fuchikami T.
Teki Y.
Itoh K.
Mizutani H.
J. Org. Chem.
1996,
61:
4300
<A NAME="RG05004ST-19C">19c</A>
Roberts JR.
Ingold KU.
J. Am. Chem. Soc.
1973,
95:
3228
<A NAME="RG05004ST-19D">19d</A>
Griller D.
Mendenhall GD.
van Hoof W.
Ingold KU.
J. Am. Chem. Soc.
1974,
96:
6068