Abstract
Reductive homocoupling of aryl halides in the presence of commercial zinc dust and
triethylammonium formate in methanol produces biaryls in good to excellent yields.
Aryl halides having either electron-donating or electron-withdrawing groups underwent
smooth coupling to afford the corresponding symmetrical biaryls. The reductive coupling
did not occur without triethylammonium formate. Addition of one equivalent of sodium
hydroxide enhanced the coupling reaction rate. The commercial zinc dust is inexpensive,
widely available and can be used without any auxiliary catalysts such as Pd(0) and/or
Ni(0).
Key words
aryl halides - homocoupling - zinc - triethylammonium formate - biaryls
References
<A NAME="RD24503ST-1A">1a </A>
Yamamoto T.
Maruyama T.
Zhou Z.
Ito T.
Fukada T.
Yoneda Y.
Begum F.
Ikeda T.
Sasaki S.
Takezoe H.
Fukada A.
Kubota K.
J. Am. Chem. Soc.
1994,
116:
4832
<A NAME="RD24503ST-1B">1b </A>
Schulz E.
Fahmi K.
Lemaire M.
Acros Org. Acta
1995,
1:
10
<A NAME="RD24503ST-1C">1c </A>
Zhu SS.
Swager TM.
Adv. Mater.
1996,
8:
497
<A NAME="RD24503ST-1D">1d </A>
Papilon J.
Schulz E.
Gelinas S.
Lessard J.
Lemaire M.
Synth. Metals
1998,
96:
155
<A NAME="RD24503ST-2">2 </A>
Bringmann G.
Walter R.
Weirich R.
Angew. Chem., Int. Ed. Engl.
1990,
29:
977
<A NAME="RD24503ST-3">3 </A>
Supramolecular Chemistry
1st ed.:
Lehn JM.
VCH Verlagsgesellschaft;
Weinheim, Germany:
1995.
<A NAME="RD24503ST-4">4 </A>
Chao Y.
Weisman GR.
Sogah GDY.
Cram DJ.
J. Am. Chem. Soc.
1979,
101:
515
<A NAME="RD24503ST-5">5 </A>
Hassan J.
Sevignon M.
Gozzi C.
Schulz E.
Lemaire M.
Chem. Rev.
2002,
102:
1359
<A NAME="RD24503ST-6A">6a </A>
Miyaura N.
Yanagi T.
Suzuki A.
Synth. Commun.
1981,
11:
513
<A NAME="RD24503ST-6B">6b </A>
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
<A NAME="RD24503ST-6C">6c </A>
Basu B.
Das P.
Bhuiyan MMH.
Jha S.
Tetrahedron Lett.
2003,
44:
3817 ; and references cited therein
<A NAME="RD24503ST-7">7 </A>
Wallow TI.
Norak BM.
J. Org. Chem.
1994,
59:
5034
<A NAME="RD24503ST-8A">8a </A>
Stanforth SP.
Tetrahedron
1998,
54:
263
<A NAME="RD24503ST-8B">8b </A>
Miller JA.
Farrell RP.
Tetrahedron Lett.
1998,
39:
6441
<A NAME="RD24503ST-9A">9a </A>
Bumagin NA.
Luzikova EV.
J. Organomet. Chem.
1997,
532:
271
<A NAME="RD24503ST-9B">9b </A>
Fechtenkotter A.
Saalwachter K.
Harbison MA.
Mullen K.
Spiess HW.
Angew. Chem. Int. Ed.
1999,
38:
3039
<A NAME="RD24503ST-10A">10a </A>
Ullmann F.
Bielecki J.
Chem. Ber.
1901,
34:
2174
<A NAME="RD24503ST-10B">10b </A>
Fanta PE.
Synthesis
1974,
1:
9
<A NAME="RD24503ST-10C">10c </A>
Sainsbury M.
Tetrahedron
1980,
36:
3327
<A NAME="RD24503ST-11A">11a </A>
Kende AS.
Liebeskind LS.
Braitsch DM.
Tetrahedron Lett.
1975,
3375
<A NAME="RD24503ST-11B">11b </A>
Zembayashi M.
Tamao K.
Yoshida J.
Kumuda M.
Tetrahedron Lett.
1977,
4089
<A NAME="RD24503ST-11C">11c </A>
Iyoda M.
Otsuka H.
Sato K.
Nisato N.
Oda M.
Bull. Chem. Soc. Jpn.
1990,
63:
80
<A NAME="RD24503ST-11D">11d </A>
Howarth J.
James P.
Dai J.
Tetrahedron Lett.
2000,
41:
10319
<A NAME="RD24503ST-11E">11e </A>
Venkatraman S.
Li C.-J.
Org. Lett.
1999,
1:
1133
<A NAME="RD24503ST-11F">11f </A>
Mukhopadhyay S.
Rothenberg G.
Gitis D.
Sasson Y.
Org. Lett.
2000,
2:
211
<A NAME="RD24503ST-12">12 </A>
Bamfield P.
Quan PM.
Synthesis
1978,
537
<A NAME="RD24503ST-13A">13a </A>
Hassan J.
Penalva V.
Lavenot L.
Gozzi C.
Lemaire M.
Tetrahedron
1998,
54:
13793
<A NAME="RD24503ST-13B">13b </A>
Penalva V.
Hassan J.
Lavenot L.
Gozzi C.
Lemaire M.
Tetrahedron Lett.
1998,
39:
2559
<A NAME="RD24503ST-13C">13c </A>
Hennings DD.
Iwama T.
Rawel VH.
Org. Lett.
1999,
1:
1205
<A NAME="RD24503ST-13D">13d </A>
Mukhopadhyay S.
Rothenberg G.
Wiener H.
Sasson Y.
Tetrahedron
1999,
55:
14763
<A NAME="RD24503ST-13E">13e </A>
Mukhopadhyay S.
Rothenberg G.
Gitis D.
Wiener H.
Sasson Y.
J. Chem. Soc., Perkin Trans. 2
1999,
2481
<A NAME="RD24503ST-13F">13f </A>
Hassan J.
Hathroubi C.
Gozzi C.
Lemaire M.
Tetrahedron
2001,
57:
7845
<A NAME="RD24503ST-13G">13g </A>
Kuroboshi M.
Waki Y.
Tanaka H.
J. Org. Chem.
2003,
68:
3938
<A NAME="RD24503ST-14A">14a </A>
Morell DG.
Kochi JK.
J. Am. Chem. Soc.
1975,
97:
7262
<A NAME="RD24503ST-14B">14b </A>
Tsou TT.
Kochi JK.
J. Am. Chem. Soc.
1979,
101:
6319
<A NAME="RD24503ST-15">15 </A>
Tucker CE.
Majid TN.
Knochel P.
J. Am. Chem. Soc.
1992,
114:
3983
<A NAME="RD24503ST-16">16 </A> For Pd/sodium formate-promoted reductive homocoupling, initial formation of PdH- species was proposed as a plausible mechanism, see:
Rajgopal S.
Anwer MK.
Spatola AF. In Peptides: Design, Synthesis, and Biological Activity
Basava C.
Anantharamaiah GM.
Birkhauser;
Boston:
1994.
p.11
<A NAME="RD24503ST-17">17 </A>
For zinc/nickel catalyst-promoted reaction, reductive elimination of Ar2 Ni affording Ar2 was proposed as a plausible mechanism.
[11 ]
<A NAME="RD24503ST-18">18 </A>
The spectra were compared to those of a commercial sample.
<A NAME="RD24503ST-19">19 </A>
Jutand A.
Mosleh A.
J. Org. Chem.
1997,
62:
261