Synlett 2004(5): 0773-0778  
DOI: 10.1055/s-2004-817778
LETTER
© Georg Thieme Verlag Stuttgart · New York

Parallel Solid Phase Synthesis of Tricomponent Bisubstrate Analogues as Potential Fucosyltransferase Inhibitors

Dmitri V. Filippova, Hans van den Elsta, Cornelia M. Trompb, Gijs A. van der Marela, Constant A. A. van Boeckelb, Herman S. Overkleeft*a, Jacques H. van Boom*a
a Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
Fax: +31(71)5274307; e-Mail: j.boom@chem.leidenuniv.nl;
b Department of Medicinal Chemistry, N. V. Organon, P. O. Box 20, 5340 BH Oss, The Netherlands
Further Information

Publication History

Received 11 December 2003
Publication Date:
10 February 2004 (online)

Abstract

A combinatorial library of 32 tricomponent bisubstrate fucosyltransferase analogs has been generated using solid-phase peptide synthesis with orthogonally protected lysine as a scaffold.

    References

  • 1a Deshpande PP. Danishefsky SJ. Nature (London, U.K.)  1997,  387:  164 
  • 1b Smithson G. Rogers CE. Smith PL. Scheidegger EP. Petryniak B. Myers JT. Kim DSL. Homeister JW. Lowe JB. J. Exp. Med.  2001,  194:  601 
  • 2 de Vries T. Knegtel RMA. Holmes EH. Macher BA. Glycobiology  2001,  11:  119R 
  • 3 Maly P. Thall AD. Petryniak B. Rogers CE. Smith PL. Marks RM. Kelly RJ. Gersten KM. Cheng GY. Saunders TL. Camper SA. Camphausen RT. Sullivan RX. Isogai Y. Hindsgaul O. von Andrian UH. Lowe JB. Cell  1996,  86:  643 
  • 4a Palcic MM. Heerze LD. Srivastava OM. Hindsgaul O. J. Biol. Chem.  1989,  264:  17174 
  • 4b Jefferies I. Bowen BR. Bioorg. Med. Chem. Lett.  1997,  7:  1171 
  • 4c Wischnat R. Martin R. Wong C.-H. J. Org. Chem.  1998,  63:  8361 
  • 4d Timmers CM. Dekker M. Buijsman RC. van der Marel GA. Ethell B. Anderson G. Burchell B. Mulder GJ. van Boom JH. Bioorg. Med. Chem. Lett.  1997,  7:  1501 
  • 4e Waldscheck B. Streiff M. Notz W. Kinzy W. Schmidt RR. Angew. Chem. Int. Ed.  2001,  40:  4007 
  • 4f Hashimoto H. Endo T. Kajihara Y. J. Org. Chem.  1997,  62:  1914 
  • 4g Hinou H. Sun X.-L. Ito Y. J. Org. Chem.  2003,  68:  5602 
  • 4h Carchon G. Chrétien F. Delannoy P. Verbert A. Chapleur Y. Tetrahedron Lett.  2001,  42:  8821 
  • 4i Carchon G. Chrétien F. Chapleur Y. Tetrahedron Lett.  2003,  44:  5715 
  • 5a Heskamp BM. Veeneman GH. van der Marel GA. van Boeckel CAA. van Boom JH. Tetrahedron  1995,  51:  8397 
  • 5b Heskamp BM. van der Marel GA. van Boom JH. J. Carbohydr. Chem.  1995,  14:  1265 
  • 7a Luengo JI. Gleason JG. Tetrahedron Lett.  1992,  33:  6911 
  • 7b Chatani N. Ikeda T. Sano T. Sonoda N. Kurosawa H. Kawasaki Y. Murai S. J. Org. Chem.  1988,  39:  4773 
  • 8 Fujii I. Tanaka F. Miyashita H. Tanimura R. Kinoshita K. J. Am. Chem. Soc.  1995,  117:  6199 
  • 9 Nakabayashi S. Warren CD. Jeanloz RW. Carbohydr. Res.  1986,  150:  C7 
  • 10 Murray BW. Takayama S. Schultz J. Wong C.-H. Biochemistry  1996,  35:  11183 
  • 11 Elloumi N. Moreau B. Aguiar L. Jaziri N. Sauvage M. Hulen C. Capmau ML. Eur. J. Med. Chem.  1992,  27:  149 
  • 12 Kuijpers WHA. van Boeckel CAA. Jenneboer AJSM. van Gool E. ISLAR ’97 Proceedings  1997,  107 
  • 13 In our hands proline proved to be a more effective linker than other linker systems, as no cyclization-cleavage side reaction can occur during the synthesis. See also the following reference: Stetsenko DA. Gait M. J. Bioconjugate Chem.  2001,  12:  576 
  • 14 Tang Z. Pelletier JC. Tetrahedron Lett.  1998,  39:  4773 
  • 16 For details of the FucT-VII inhibition assay we used see: Murray BW. Wittman V. Burkart MD. Hung S.-C. Wong C.-H. Biochemistry  1997,  36:  823 
6

Earlier (see ref. [5] ) we called these compounds ‘trisubstrate analogues’, as opposed to the bisubstrate analogues earlier reported by Hindsgaul and coworkers (see ref. [4a] ). Later on similar compounds were termed ‘tricomponent bisubstrate analogues’ on the basis that glycosyltransferases employ two, instead of three, substrates (see also ref. [4e] ).

15

Compound Ia: 1H NMR (600 MHz, D2O): δ = 7.89 (s 1 H), 5.84 (d, 1 H, J = 5.5 Hz), 4.51 (d, 1 H, J = 8.4 Hz), 4.37-4.20 (m, 8 H), 3.97 (AB, 2 H), 3.87 (d, 1 H, J = 12 Hz), 3.72 (m, 4 H), 3.62-3.52 (m, 5 H), 3.43 (m, 2 H), 3.08 (br m, 2 H), 2.01 (s, 3 H), 1.61 (br m, 2 H), 1.40 (br m, 2 H), 1.25 (br m, 2 H), 1.21 (d, 3 H, J = 6.2 Hz). ESI-MS: 933.5 [M + H+]. Compound IVb: 1H NMR (600 MHz, D2O): δ = 7.87 (s 1 H), 5.84 (d, 1 H, J = 5.6 Hz), 4.51 (d, 1 H, J = 8.4 Hz), 4.28-4.12 (m, 5 H), 3.86 (d, 1 H, J = 11.5 Hz), 3.76-3.70 (m, 4 H), 3.63 (m, 4 H), 3.53 (m, 2 H), 3.43 (m, 2 H), 3.08 (br t, 2 H), 2.00 (s, 3 H), 1.65 (br m, 2 H), 1.41 (br. m, 2 H), 1.21 (br. m, 2 H), 1.14 (d, 3 H, J = 6.4 Hz). ESI-MS: 846.6 [M + H+]. Compound Va: 1H NMR (600 MHz, D2O) δ = 7.89 (s, 1 H), 5.84 (d, 1 H, J = 5.6 Hz), 4.54 (d, 1 H, J = 8.4 Hz), 4.34 (m, 2 H), 4.26 (m, 2 H), 4.18 (m, 4 H), 3.96 (m, 2 H), 3.86 (m, 1 H), 3.73 (m, 4 H), 3.62 (m, 2 H), 3.53 (m, 3 H), 3.44 (m, 2 H), 3.15-3.00 (m, 2 H), 2.00 (s, 3 H), 1.61 (br m, 2 H), 1.39 (br m, 2 H), 1.25 (br m, 2 H), 1.20 (d, 3 H, J = 6.2 Hz). ESI-MS: 933.4 [M + H+]. Compound Vb: 1H NMR (600 MHz, D2O) δ = 7.89 (s, 1 H), 5.83 (d, 1 H, J = 5.6 Hz), 4.54 (d, 1 H, J = 8.4 Hz), 4.34-4.18 (m, 5 H), 3.99-3.86 (m, 3 H), 3.76-3.43 (m, 12 H), 3.11 (br m, 2 H), 1.99 (s, 3 H), 1.62 (br m, 2 H), 1.39 (br m, 2 H), 1.25 (br m, 2 H), 1.21 (d, 3 H, J = 6.2 Hz). ESI-MS: 903.4 [M + H+].

17

Compound 16 (a 1:3 mixture of 2′-en-3′-O-acetates, chemical shifts are given for the major isomer): 1H NMR (200 MHz, CDCl3): δ = 7.80 (s, 1 H, H-8), 7.11 (m, 2 H, Pac), 6.81 (m, 3 H, Pac), 5.87 (d, 1 H, J 12 = 4.8 Hz, H-1′), 5.75 (dd, 1 H, J 21 = 4.8 Hz, J 23 = 5.7 Hz, H-2′), 5.49 (t, 1 H, J 32 = 5.7 Hz, H-3′), 4.58 (s, 2 H, CH2O), 4.42 (br s, 2 H, 2 NH), 4.14 (m, 1 H, H-4′), 3.46 (ABX, 2 H, H-5′), 2.42 (m, 4 H, CH2, succinyl), 1.95 (s, 3 H, acetyl). 13C NMR (50 MHz, CDCl3): δ = 173.7, 170.9, 170.4, 169.7 (C=O), 156.5, 155.2 (C6, Cq, Pac), 147.6, 146.6 (C4, C2), 138.0 (C-8), 129.2, 121.7 (Ct, Pac), 121.0 (C5), 114.2 (Ct, Pac), 86.4, 80.4, 72.5, 70.0 (C-1′, C-2′, C-3′, C-4′), 66.3 (CH2O, Pac), 50.7 (C-5′), 28.3 (CH2, succinyl), 19.9 (CH3, acetyl). ESI-MS: 607.2 [M + Na]+, negative mode: 583.2 [M - H]-, 482.9 [M - succinic anhydride - H]-.

18

Protonated molecular ion of oxazoline 7 was consistently found in the ESI MS spectra of pure GlcNAc derivatives, probably due to the loss of the aglycon in the gas phase.