Zusammenfassung
Hintergrund: Die Pathogenese retinaler Venenastverschlüsse scheint sich von der des Zentralgefäßes
zu unterscheiden. Ätiologische Hinweise auf arteriosklerotische Grunderkrankungen
und entsprechende anatomische Besonderheiten postulieren ein kompressorisches Geschehen
der Vene im Bereich arteriovenöser Gefäßkreuzungen. Neue Behandlungsoptionen wie die
chirurgische Intervention im Rahmen einer Glaskörperoperation eröffnen neue therapeutische
Möglichkeiten. Patienten und Methoden: In einer klinischen Anwendungsbeobachtung wurden 12 Patienten mit ischämischer Venenastthrombose
unter Einhaltung strenger Einschlusskriterien mittels einer Adventitiaspaltung (AVS)
behandelt. Die Dekompressionsoperation erfolgte 0,5 - 6 Monate nach dem Verschluss.
Die Nachuntersuchungszeit betrug 3 Monate. Sehschärfe, Netzhautperfusion und das Auftreten
sekundärer Komplikationen wurden als Verlaufsparameter ausgewertet. Ergebnisse: Die Sehschärfe stieg im postoperativen Verlauf von logMAR-System von 0,74 (dezimal
0,18) auf 0,56 (0,32) nach 3 Monaten. Operative und unmittelbar postoperative Komplikationen
wurden nicht beobachtet. Fluoreszenzangiographisch konnte eine Verbesserung der retinalen
Netzhautperfusion in 75 % der Fälle registriert werden, bei 50 % waren bereits 3 Monate
nach OP keine Non-perfusion-Areale mehr nachweisbar. Schlussfolgerungen: Bei Patienten mit ischämischer retinaler Venenastthrombose scheint die AVS eine sichere
und visusverbessernde Therapie zu sein. Die Ergebnisse zeigen in der Frühphase bis
zu 3 Monaten nach Verschluss eine Zunahme der Sehschärfe bei gleichzeitigem Fehlen
von Sekundärkomplikationen.
Abstract
Background: The pathogenesis of branch retinal vein occlusion (BRVO) seems to differ from that
of central retinal vein occlusion (CRVO). Arteriosclerotic and anatomic aspects suggest
that arteriovenous crossing of vessels may play a significant role. New procedures
like arteriovenous decompression have been proposed to be a suitable form of treatment.
Patients and Methods: In a clinical trial, 12 patients with ischemic BRVO underwent surgical decompression.
Strict criteria of inclusion were maintained. Arteriovenous sheathotomy (AVS) was
performed 0.5 - 6 months after retinal vein occlusion. Follow up-time was 3 months.
Visual acuity and incidence of typical complications after RVO were the main aspects
of interest in the scientific evaluation. Results: After surgical AVS, visual acuity increased significantly from logMAR 0.74 (decimal
0.18) to 0.56 (0.32) in EDTRS charts. Surgical or early complications did not occur
during the 3-month control period. Improvement of retinal blood flow during angiography
was demonstrated in 75 % of the patients. In 50 % of the patients all non-perfusion
areas had disappeared. Conclusions: For patients with retinal vein occlusion, AVS seems to be a safe and feasible procedure
according to the pathogenesis of branch occlusion. Our results suggest that AVS has
the potential to improve visual acuity while typical complications due to surgery
or vein occlusion do not occur during the first three months.
Schlüsselwörter
Venenverschluss - Adventitia - Dekompression - Fibrinolyse - Risikofaktor
Key words
Retinal vein occlusion - adventitia - sheathotomy - decompression - fibrinolysis
Literatur
- 1
The Branch Vein Occlusion Study Group .
Argon laser photocoagulation for macular edema in branch vein occlusion.
Am J Ophthalmol.
1984;
98
271-282
- 2
Branch Vein Occlusion Study Group .
Argon laser scatter photocoagulation for prevention of neovascularization and vitreous
hemorrhage in branch vein occlusion. A randomized clinical trial.
Arch Ophthalmol.
1986;
104
34-41
- 3
The Central Vein Occlusion Study Group .
Natural history and clinical management of central retinal vein occlusion.
Arch Ophthalmol.
1997;
115
486-491
- 4
Chen H C, Wiek J, Gupta A. et al .
Effect of isovolaemic haemodilution on visual outcome in branch retinal vein occlusion.
Br J Ophthalmol.
1998;
82
162-167
- 5
Chen J C, Klein M L, Watzke R C. et al .
Natural course of perfused central retinal vein occlusion.
Can J Ophthalmol.
1995;
30
21-24
- 6
Gutman F A, Zegarra H.
The natural course of temporal retinal branch vein occlusion.
Trans Am Acad Ophthalmol Otolaryngol.
1974;
78
178-192
- 7
Hansen L L, Wiek J, Arntz R.
[Randomized study of the effect of isovolemic hemodilution in retinal branch vein
occlusion].
Fortschr Ophthalmol.
1988;
85
514-516
- 8
Hattenbach L O, Arndt C F, Lerche R C. et al .
Thrombolysis in retinal vein occlusion: a prospective randomized controlled multicenterstudy.
Ophthalmologe.
2003;
100
S15
- 9
Hattenbach L O, Steinkamp G, Scharrer I. et al .
Fibrinolytic therapy with low-dose recombinant tissue plasminogen activator in retinal
vein occlusion.
Ophthalmologica.
1998;
212
394-398
- 10
Hayreh S S, Zimmerman M B, Podhajsky P.
Incidence of various types of retinal vein occlusion and their recurrence and demographic
characteristics.
Am J Ophthalmol.
1994;
117
429-441
- 11
Kumar B, Yu D Y, Morgan W H. et al .
The distribution of angioarchitectural changes within the vicinity of the arteriovenous
crossing in branch retinal vein occlusion.
Ophthalmology.
1998;
105
424-427
- 12
Lang G E, Spraul C W.
[Risk factors for retinal occlusive diseases].
Klin Monatsbl Augenheilkd.
1997;
211
217-226
- 13
Magargal L E, Donoso L A, Sanborn G E.
Retinal ischemia and risk of neovascularization following central retinal vein obstruction.
Ophthalmology.
1982;
89
1241-1245
- 14
Mason J 3rd, Feist R, White M Jr. et al .
Sheathotomy to decompress branch retinal vein occlusion: a matched control study.
Ophthalmology.
2004;
111
540-545
- 15
Mester U, Dillinger P.
Treatment of retinal vein occlusion. Vitrectomy with arteriovenous decompression and
dissection of the internal limiting membrane.
Ophthalmologe.
2001;
98
1104-1109
- 16
Mester U, Dillinger P.
Vitrectomy with arteriovenous decompression and internal limiting membrane dissection
in branch retinal vein occlusion.
Retina.
2002;
22
740-746
- 17
Murray P I.
Neovascular glaucoma, endophthalmitis and evisceration.
Metab Pediatr Syst Ophthalmol.
1991;
14
5-7
- 18
Neubauer A S, Mueller A J, Schriever S. et al .
[Minimally invasive therapy for clinically complete central retinal artery occlusion
- results and meta-analysis of literature].
Klin Monatsbl Augenheilkd.
2000;
217
30-36
- 19
Opremcak E M, Bruce R A.
Surgical decompression of branch retinal vein occlusion via arteriovenous crossing
sheathotomy: a prospective review of 15 cases.
Retina.
1999;
19
1-5
- 20
Orth D H, Patz A.
Retinal branch vein occlusion.
Surv Ophthalmol.
1978;
22
357-376
- 21
Osterloh M D, Charles S.
Surgical decompression of branch retinal vein occlusions.
Arch Ophthalmol.
1988;
106
1469-1471
- 22
Rabinowicz I M, Litman S, Michaelson I C.
Branch venous thrombosis - a pathological report.
Trans Ophthalmol Soc U K.
1969;
88
191-210
- 23
Remky A, Wolf S, Hamid M. et al .
[Effect of hemodilution on retinal hemodynamics in retinal branch vein occlusion].
Ophthalmologe.
1994;
91
288-292
- 24
Ros M A, Magargal L E, Uram M.
Branch retinal-artery obstruction: a review of 201 eyes.
Ann Ophthalmol.
1989;
21
103-107
- 25
Shah G K, Sharma S, Fineman M S. et al .
Arteriovenous adventitial sheathotomy for the treatment of macular edema associated
with branch retinal vein occlusion.
Am J Ophthalmol.
2000;
129
104-106
- 26
Weinberg D V, Egan K M, Seddon J M.
Asymmetric distribution of arteriovenous crossings in the normal retina.
Ophthalmology.
1993;
100
31-36
- 27
Zhao J, Sastry S M, Sperduto R D. et al .
Arteriovenous crossing patterns in branch retinal vein occlusion. The Eye Disease
Case-Control Study Group.
Ophthalmology.
1993;
100
423-428
Dr. Ralf-Christian Lerche
Universitäts-Augenklinik
Martinistraße 52
20246 Hamburg
Phone: 0 40/4 28 03-33 09
Fax: 0 40/4 28 03-45 30
Email: RCLerche@uke.uni-hamburg.de