Zusammenfassung
Hintergrund: Neben der gesteigerten Zellproliferation stellt die Entdifferenzierung von Linsenepithelzellen
zu myofibroblastenartigen Zellen einen wesentlichen Mechanismus bei der Nachstarentwicklung
dar. Diese Entdifferenzierung geht einher mit Expression von α-smooth muscle actin
(α-SMA). In dieser Studie wurde der Einfluss der Wachstumsfaktoren bFGF, TGF-β2, EGF
und IGF-1 auf die Expression von α-SMA bei porcinen Linsenepithelzellen untersucht.
Material und Methoden: Porcine Linsenepithelzellen wurden über einen Zeitraum von sieben Tagen in serumfreiem
Medium ohne bzw. mit 1 - 50 ng/ml bFGF, TGF-β2, EGF oder IGF-1 kultiviert. Die α-SMA-Expression
wurde immunzytochemisch mit einem monoklonalen Antikörper detektiert und der Anteil
an α-SMA-positiven Zellen im Vergleich zur Gesamtzellzahl ausgewertet. Die statistische
Auswertung erfolgte mit dem Student-t-Test für ungepaarte Stichproben. Ergebnisse: Der Anteil an α-SMA-positiven Zellen lag bei den Zellen, die über sieben Tage in
serumfreiem Medium kultiviert worden waren, bei 36 ± 11,9 % (Mittelwert ± Standardabweichung).
BFGF reduzierte diesen Anteil dosisabhängig auf 11,2 ± 7,3 % bei einer Konzentration
von 50 ng/ml (p < 0,0001). EGF reduzierte den Anteil auf 25,1 ± 15,7 % (p = 0,05)
bei einer Konzentration von 50 ng/ml. IGF-1 (10 ng/ml) verminderte den Anteil an entdifferenzierten
Zellen auf 16,8 ± 5,8 %, was jedoch nicht signifikant war (p = 0,0787). TGF-β (50
ng/ml) erhöhte den Anteil an α-SMA-positiven Zellen geringfügig auf 44,2 ± 13,8 %.
Nach einer Kulturperiode von sieben Tagen war dieser Anstieg jedoch nicht signifikant
(p = 0,1202). Schlussfolgerungen: BFGF und EGF reduzierten die α-SMA-Expression von Linsenepithelzellen statistisch
signifikant im Gegensatz zu TGF-β und IGF-1, die keinen signifikanten Einfluss hatten.
Diese Ergebnisse können so interpretiert werden, dass bei der Nachstarentwicklung
bFGF und EGF nicht primär über den Mechanismus der Zellentdifferenzierung wirken.
Abstract
Background: Besides cell proliferation, transdifferentiation of lens epithelial cells (LECs)
to myofibroblasts is one of the mechanisms of secondary cataract formation. This process
is characterized by increased expression of α-smooth muscle actin (α-SMA). This
study investigated the influence of bFGF, TGF-β2, EGF and IGF-1 on the expression
of α-SMA in porcine LECs. Materials and methods: Porcine LECs were cultured for 7 days in serum-free medium without or with 1 to 50
ng/ml bFGF, TGF-β2, EGF or IGF-I. Alpha-SMA was detected immunocytochemically with
a mouse monoclonal antibody, and the relative numbers of α-SMA-positive cells were
calculated. Statistical analysis was performed using Student’s unpaired t-test. Results: The ratio of α-SMA-positive cells cultured for 7 days in serum-free medium was 36
± 11.9 % (mean ± SD). BFGF significantly reduced this ratio in a dose-dependent manner
to 11.2 ± 7.3 % at a concentration of 50 ng/ml (p < 0.0001). EGF reduced the ratio
significantly to 25.1 ± 15.7 % (p = 0.05) when 50 ng/ml were applied. IGF-1 (10 ng/ml)
reduced the relative numbers of transdifferentiated cells to 16.8 ± 5.8 %, but the
reduction was not statistically significant (p = 0.0787). TGF-β2 (50 ng/ml) slightly
increased the relative number of α-SMA-positive cells to 44.2 ± 13.8 %. However, this
increase was not significant (p = 0.1202) during a culture period of 7 days. Conclusions: BFGF and EGF significantly reduced the expression of α-SMA by LECs while TGF-β and
IGF-1 had no statistically significant effect. These results suggest that bFGF and
EGF do not primarily induce secondary cataract formation by the mechanism of cell
transdifferentiation.
Schlüsselwörter
BFGF - Differenzierung - EGF - IGF-1 - Linsenepithelzellen - Nachstar - α-SMA-Expression
- TGF-β
Key words
BFGF - differentiation - EGF - IGF-1 - lens epithelial cells - secondary cataract
- α-SMA expression - TGF-β
Literatur
- 1
Allen J B, Davidson M G, Nasisse M P. et al .
The lens influences aqueous humor levels of transforming growth factor-beta 2.
Graefes Arch Clin Exp Ophthalmol.
1998;
236
305-311
- 2
Beck R, zur Linden B, Stave J. et al .
(Effect of intraocular lens design on posterior capsule opacification: an in-vitro
model).
Klin Monatsbl Augenheilkd.
2001;
218
111-115
- 3
Bjorkerud S.
Effects of transforming growth factor-beta 1 on human arterial smooth muscle cells
in vitro.
Arterioscler Thromb.
1991;
11
892-902
- 4
Brenzel A, Gressner A M.
Characterization of insulin-like growth factor (IGF)-I-receptor binding sites during
in vitro transformation of rat hepatic stellate cells to myofibroblasts.
Eur J Clin Chem Clin Biochem.
1996;
34
401-409
- 5
Cobo L M, Ohsawa E, Chandler D. et al .
Pathogenesis of capsular opacification after extracapsular cataract extraction. An
animal model.
Ophthalmology.
1984;
91
857-863
- 6
Donath M Y, Zapf J, Eppenberger-Eberhardt M. et al .
Insulin-like growth factor I stimulates myofibril development and decreases smooth
muscle alpha-actin of adult cardiomyocytes.
Proc Natl Acad Sci U S A.
1994;
91
1686-1690
- 7
Edlund S, Landstrom M, Heldin C H. et al .
Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires
signaling by small GTPases Cdc42 and RhoA.
Mol Biol Cell.
2002;
13
902-914
- 8
Giannini G, Alesse E, Di Marcotullio L. et al .
EGF regulates a complex pattern of gene expression and represses smooth muscle differentiation
during the neurotypic conversion of the neural-crest-derived TC-1S cell line.
Exp Cell Res.
2001;
264
353-362
- 9
Guidry C.
Tractional force generation by porcine Muller cells. Development and differential
stimulation by growth factors.
Invest Ophthalmol Vis Sci.
1997;
38
456-468
- 10
Hales A M, Chamberlain C G, McAvoy J W.
Cataract induction in lenses cultured with transforming growth factor-beta.
Invest Ophthalmol Vis Sci.
1995;
36
1709-1713
- 11
Hales A M, Schulz M W, Chamberlain C G. et al .
TGF-beta 1 induces lens cells to accumulate alpha-smooth muscle actin, a marker for
subcapsular cataracts.
Curr Eye Res.
1994;
13
885-890
- 12
Ibaraki N, Lin L R, Reddy V N.
Effects of growth factors on proliferation and differentiation in human lens epithelial
cells in early subculture.
Invest Ophthalmol Vis Sci.
1995;
36
2304-2312
- 13
Iwig M, Glasser D, Luther M. et al .
(Human lens cells in culture. I. Isolation of adult lens epithelial cells from lens
capsule preparations and reactivation of nucleus-containing fiber cells).
Klin Monatsbl Augenheilkd.
2001;
218
102-110
- 14
Kurosaka D, Kato K, Nagamoto T. et al .
Growth factors influence contractility and alpha-smooth muscle actin expression in
bovine lens epithelial cells.
Invest Ophthalmol Vis Sci.
1995;
36
1701-1708
- 15
Kurosaka D, Nagamoto T.
Inhibitory effect of TGF-beta 2 in human aqueous humor on bovine lens epithelial cell
proliferation.
Invest Ophthalmol Vis Sci.
1994;
35
3408-3412
- 16
Lee E H, Joo C K.
Role of transforming growth factor-beta in transdifferentiation and fibrosis of lens
epithelial cells.
Invest Ophthalmol Vis Sci.
1999;
40
2025-2032
- 17
Liu J, Hales A M, Chamberlain C G. et al .
Induction of cataract-like changes in rat lens epithelial explants by transforming
growth factor beta.
Invest Ophthalmol Vis Sci.
1994;
35
388-401
- 18
Majima K.
The relationship between morphological changes of lens epithelial cells and intraocular
lens optic material.
Jpn J Ophthalmol.
1998;
42
46-50
- 19
Marcantonio J M, Vrensen G F.
Cell biology of posterior capsular opacification.
Eye.
1999;
13
484-488
- 20
Masszi A, Di Ciano C, Sirokmany G. et al .
Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during
epithelial-mesenchymal transition.
Am J Physiol Renal Physiol.
2003;
284
F911-F924
- 21
McDonnell P J, Zarbin M A, Green W R.
Posterior capsule opacification in pseudophakic eyes.
Ophthalmology.
1983;
90
1548-1553
- 22
Nagamoto T, Eguchi G, Beebe D C.
Alpha-smooth muscle actin expression in cultured lens epithelial cells.
Invest Ophthalmol Vis Sci.
2000;
41
1122-1129
- 23
Nishi O, Nishi K, Fujiwara T. et al .
Effects of the cytokines on the proliferation of and collagen synthesis by human cataract
lens epithelial cells.
Br J Ophthalmol.
1996;
80
63-68
- 24
Peehl D M, Sellers R G.
Basic FGF, EGF, and PDGF modify TGFbeta- induction of smooth muscle cell phenotype
in human prostatic stromal cells.
Prostate.
1998;
35
125-134
- 25
Richiert D M, Ireland M E.
TGF-beta elicits fibronectin secretion and proliferation in cultured chick lens epithelial
cells.
Curr Eye Res.
1999;
18
62-71
- 26
Saika S, Kawashima Y, Miyamoto T. et al .
Immunolocalization of prolyl 4-hydroxylase subunits, alpha-smooth muscle actin, and
extracellular matrix components in human lens capsules with lens implants.
Exp Eye Res.
1998;
66
283-294
- 27
Schmitt-Graff A, Pau H, Spahr R. et al .
Appearance of alpha-smooth muscle actin in human eye lens cells of anterior capsular
cataract and in cultured bovine lens-forming cells.
Differentiation.
1990;
43
115-122
- 28
Seomun Y, Kim J, Lee E H. et al .
Overexpression of matrix metalloproteinase-2 mediates phenotypic transformation of
lens epithelial cells.
Biochem J.
2001;
358
41-48
- 29
Wallentin N, Wickstrom K, Lundberg C.
Effect of cataract surgery on aqueous TGF-beta and lens epithelial cell proliferation.
Invest Ophthalmol Vis Sci.
1998;
39
1410-1418
- 30
Wang Y C, Rubenstein P A.
Epidermal growth factor controls smooth muscle alpha-isoactin expression in BC3H1
cells.
J Cell Biol.
1988;
106
797-803
- 31
Wormstone I M, Rio-Tsonis K, McMahon G. et al .
FGF: an autocrine regulator of human lens cell growth independent of added stimuli.
Invest Ophthalmol Vis Sci.
2001;
42
1305-1311
- 32
Wunderlich K, Knorr M, Northoff H. et al .
(Effect of lymphocyte-conditioned medium on expression of smooth muscle alpha-actin
in lens epithelium cells in situ).
Ophthalmologe.
1999;
96
174-181
Prof. Dr. Gabriele E. Lang
Universitäts-Augenklinik
Prittwitzstr. 43
89075 Ulm
Email: gabriele.lang@medizin.uni-ulm.de