Zusammenfassung
Viele Erkrankungen werden mit einem oxidativen Schaden durch Sauerstoffradikale in
Verbindung gebracht, wobei solche Schäden durch das Ungleichgewicht zwischen dem Radikalbildungssystem
und dem Radikalabbausystem entstehen. Dieser Zustand wird als oxidativer Stress bezeichnet.
Bei Patienten mit Hepatitis oder anderen chronischen Lebererkrankungen wurde ein erhöhter
oxidativer Stress nachgewiesen. Experimentelle Studien haben auch den Zusammenhang
zwischen der Überproduktion von Sauerstoffradikalen in der Reperfusionsphase und einen
darauf folgenden Gewebsschaden nach Lebertransplantation festgestellt. Nahezu alle
Zelltypen in der Leber haben die Fähigkeit freie Sauerstoffradikale zu bilden; diese
sind als auslösende und modulierende Faktoren an der Entstehung und Progression von
Lebererkrankungen beteiligt. Glutathion, ein in der Leber synthetisiertes Tripeptid,
spielt eine wesentliche Rolle bei der Verhinderung von oxidativem Stress. Ein Mangel
an Glutathion bzw. anderen Antioxidantien in der Leber verstärkt die weitere Progression
von Leberzellschäden und wurde bei unterschiedlichen Lebererkrankungen festgestellt.
Die Hemmung der Produktion von Sauerstoffradikalen durch Antioxidantien ist ein logischer
Ansatz bei der Behandlung von Leberzellschäden. Vitamin C, E, A und β-Karotin sind
effektive Radikalfänger von Sauerstoff. In den letzten Jahren wurden einige neue Methoden
entwickelt, wobei diese auf der Genübertragung antioxidativer Enzyme beruhen. Die
Messung von oxidativen Schäden kann durch spezifische Biomarker quantifiziert werden.
Experimentelle Daten zu diesem Thema konnten jedoch klinisch nicht verifiziert werden.
Zum kausalen Zusammenhang zwischen dem Ausmaß des oxidativen Stresses bzw. den oxidativen
Stressparametern einerseits und dem klinischen Verlauf beim Patienten andererseits,
gibt es sehr wenige Daten. Zur Standardisierung der antioxidativen Behandlung und
zur besseren Beobachtung der Progression von Lebererkrankungen bei dieser Behandlung
sind weitere Studien notwendig.
Abstract
Many diseases are linked to oxidative damage from reactive oxygen species as a result
of an imbalance between radical generating and radical scavenging systems, a condition
known as oxidative stress. In patients with hepatitis or other chronic liver diseases,
there is consistent evidence of enhanced oxidative stress. Experimental studies have
also elucidated the relationship between the hyperproduction of reactive oxygen species
during the reperfusion phase and ischemia-reperfusion tissue injury. Nearly all cell
types in the liver have the capacity to generate oxygen-free radicals, which participate
as initiating factors and modulators in the induction and progression of liver disease.
Glutathione, a tripeptide synthetised in the liver, plays a crucial role against oxidative
stress. A deficiency of hepatic glutathione and its antioxidant partners are found
to be reduced in liver diseases, which amplifies further progression of liver cell
damage. Inhibition of reactive oxygen species production and augmentation of antioxidant
defences is a logical approach in the treatment of liver cell damage. Vitamins C,
E, A and β carotene are found to be effective as scavengers of reactive oxygen species.
Some new approaches based on gene delivery of antioxidant enzymes have been developed.
The measurement of oxidative damage can be quantified by the specific biomarkers of
altered redox state. However, experimental data on this subject have not always been
confirmed clinically. Very few data are available on the causal relationship between
the degree of oxidative damage or oxidative stress parameters and the outcome of patients.
Future research is required to standardise the antioxidative treatment and to better
observe the progression of liver diseases during this treatment.
Schlüsselwörter
Oxidativer Stress - Sauerstoffradikale - Lebererkrankung - Antioxidantien - oxidative
Stressparameter
Key words
Oxidative stress - reactive oxygen species - liver disease - antioxidants - oxidative
stress parameters
References
- 1
Chevion S, Moran D S, Heled Y, Shani Y, Regev G, Abbou B, Berenshtein E, Stadtman E R,
Epstein Y.
Plasma antioxidant status and cell injury after severe physical exercise.
PNAS.
2003;
100
5119-5123
- 2 Omar B, McCord J, Downey J.
Ischemia-Reperfusion. In: Sies H (ed) Oxidative stress: Oxidant and antioxidants. London; Academic Press
1991: 493-527
- 3
Goode H F, Webster N R.
Anti-oxidants in intensive care medicine.
Clin Intensive Care.
1993;
4
265-270
- 4 Borhani M, Helton W S.
Antioxidants in critical illness. In: Pichard C, Kudsk KA (eds) From nutrition support to pharmacologic nutrition in
the ICU. New York; Springer 2000: 80-92
- 5
Ortolani O, Conti A, Gaudio A R De, Moraldi E, Cantini Q, Novelli G.
The effect of glutathione and N-acetylcysteine on lipoperoxidative damage in patients
with early septic shock.
Am J Resp Crit Care Med.
2000;
161
1907-1911
- 6
Metnitz P GH, Bartens C, Fischer M, Fridrich P, Steltzer H, Druml W.
Antioxidant status in patients with acute respiratory distress syndrome.
Intensive Care Med.
1999;
25
180-185
- 7
Loguercio C, Federico A.
Oxidative stress in viral and alcoholic hepatitis.
Free Radic Biol Med.
2003;
34
1-10
- 8
Wang J H, Redmond H P, Wu Q Di, Bouchier-Hayes D.
Nitric oxide mediates hepatocyte injury.
Am J Physiol.
1998;
275
1117-1126
- 9
Kaplowitz N.
Mechanisms of liver cell injury.
J Hepatol.
2000;
32
39-47
- 10
Aw T Y.
Biliary glutathione promotes the mucosal metabolism of luminal peroxidized lipids
by rat small intestine in vivo.
J Clin Invest.
1994;
94
1218-1225
- 11
Loguercio C, Pierro M Di.
The role of glutathione in the gastrointestinal tract: a review.
Ital J Gastroenterol Hepatol.
1999;
31
401-407
- 12
Burk R F, Hill K E, Motley A K.
Selenoprotein metabolism and function: evidence for more than one function for selenoprotein
P.
J Nutr.
2003;
133
1517S-1520S
- 13
Meagher E A, Barry O P, Burke A, Lucey M R, Lawson J A, Rokach J, Fitzgerald G A.
Alcohol-induced generation of lipid peroxidation products in humans.
J Clin Invest.
1999;
104
805-813
- 14
Natori S, Rust C, Stadheim L M, Srinivasan A, Burgart L J, Gores G J.
Hepatocyte apoptosis is a pathologic feature of human alcoholic hepatitis.
J Hepatol.
2001;
34
248-253
- 15
Rigamonti C, Mottaran E, Reale E, Rolla R, Cipriani V, Capelli F, Boldorini R, Vidali M,
Sartori M, Albano E.
Moderate alcohol consumption increases oxidative stress in patients with chronic hepatitis
C.
Hepatology.
2003;
38
42-49
- 16
Beloqui O, Prieto J, Suarez M, Gil B, Qian C H, Garcia N, Civeira M P.
N-acetyl cysteine enhances the response to interferon alpha in chronic hepatitis C:
a pilot study.
J Interferon Res.
1993;
13
279-282
- 17
Buja L, Hagler H K, Willerson J T.
Altered calcium homeostasis in the pathogenesis of myocardial ischemic and hypoxic
injury.
Cell Calcium.
1988;
9
205-217
- 18
Littauer A, Groot H de.
Release of reactive oxygen by hepatocytes on reoxygenation: Three phases and role
of mitochondria.
Am J Physiol.
1992;
262
G1015-1020
- 19
McKeown C M, Edwards V, Phillips M J, Harvey P RC, Petrumka C N, Strasmerg S N.
Sinusoidal lining cell damage: The critical injury in cold preservation of liver allografts
in the rat.
Transplantation.
1988;
46
178-191
- 20
Laroux F S, Pavlick K P, Hines I N, Kawachi S, Harada H, Bharwani S, Hoffman J M,
Grisham M B.
Role of nitric oxide in inflammation.
Acta Physiol Scand.
2001;
173
113-118
- 21
Londero D, Lo Greco P.
Automated high-performance liquid chromatographic separation with spectrofluorometric
detection of a malondialdehyde-thiobarbituric acid adduct in plasma.
J Chromatogr A.
1996;
729
207-210
- 22
Tateishi T, Yoshimine N, Kuzuya F.
Serum lipid peroxide assayed by new colorimetric method.
Exp Gerontol.
1987;
22
103-111
- 23
Biasi F, Bosco M, Chiappino I, Chiarpotto E, Lanfranco G, Ottobrelli A, Massano G,
Donadio P P, Vaj M, Andorno E, Rizzeto M, Salizzoni M, Poli G.
Oxidative damage in human liver transplantation.
Free Radic Biol Med.
1995;
19
311-317
- 24
Szuster-Ciesielska A, Daniluk J, Kandefer-Szerszen M.
Oxidative stress in the blood of patients with alcohol-related liver cirrhosis.
Med Sci Monit.
2002;
8
CR419-424
- 25 Quaggiotto P, Garg M L.
Isoprostanes: Indicators of oxidative stress in vivo and their biological activity. In: Basu TK, Temple NJ, Garg ML (eds) Antioxidants in human health and disease. New
York; CABI Publishing 1999: 393-410
- 26
Burke A, Fitzgerald G A, Lucey M R.
A prospective analysis of oxidative stress and liver transplantation.
Transplantation.
2002;
74
217-221
- 27 Redl H, Schlag G. Cytokines in severe sepsis and septic shock. Basel; Birkhäuser
1999: 133-142
- 28
Ben-Baouli A, Aube H, Maupoil V, Blettery B, Rochette L.
Plasma lipid peroxidation in critically ill patients: importance of mechanical ventilation.
Free Radic Biol Med.
1994;
16
223-227
- 29
Inder T E, Darlow B A, Sluis K B, Winterbourn C C, Graham P, Sanderson K J, Taylor B J.
The correlation of elevated levels of an index of lipid peroxidation (MDA-TBA) with
adverse outcome in the very low birthweight infant.
Acta Pediatr.
1996;
85
1116-1122
- 30
Matsuda T, Tanaka H, Hanumadass M, Gayler R, Yuasa H, Abcarian H, Matsuda H, Reyes H.
Effects of high-dose vitamin C administration of post burn microvascular fluid and
protein flux.
J Burn Care Rehabil.
1992;
13
560-566
- 31
Chai J, Guo Z, Sheng Z.
Protective effects of vitamin E on impaired neutrophil phagocyte function in patients
with severe burn.
Chung Hua Cheng Hsing Shao Shang Wai Ko Tsa Chih.
1995;
1
32-35
- 32
Zimmermann T, Albrecht S, Kuhne H, Vogelsang U, Grutzmann R, Kopprasch S.
Selenium administration in patients with sepsis syndrome. A prospective randomized
study.
Med Klin.
1997;
92 (Suppl 3)
3-4
- 33
Turkodgan M K, Agaoglu Z, Yener Z, Sekeroglu R.
Akkan HA, Avci ME. The role of antioxidant vitamins (C and E), selenium and nigella
sativa in the prevention of liver fibrosis and cirrhosis in rabbits: new hopes.
Dtsch Tierarztl Wochenschr.
2001;
108
71-73
- 34
Henderson A, Hayes P.
Acetylcysteine as a cytoprotective antioxidant in patients with severe sepsis: potential
new use for an old drug.
Ann Pharmacother.
1994;
28
1086-1088
- 35
Fiorucci S, Santucci L, Antonelli E, Distrutti E, Sero G Del, Morelli O, Romani L,
Federici B, Soldato P Del, Morelli A.
NO-aspirin protects from T cell-mediated liver injury by inhibiting caspase-dependent
processing of Th1-like cytokines.
Gastroenterology.
2000;
118
404-421
- 36
Shah V, Chen A F, Cao S, Hendrickson H, Weiler D, Smith L, Yao J, Katusic Z S.
Gene transfer of recombinant endothelial nitric oxide synthase to liver in vivo and
in vitro.
Am J Physiol Gastrointest Liver Physiol.
2000;
279
G1023-G1030
- 37
Swart P J, Hirano T, Kuipers M E, Ito Y, Smit C, Hashida M, Nishikawa M, Beljaars L,
Meijer D KF, Poelstra K.
Targeting of superoxide dismutase to the liver results in anti-inflammatory effects
in rats with fibrotic livers.
J Hepatol.
1999;
31
1034-1043
- 38
Yee L J, Tang J, Gibson A W, Kimberly R, Leeuwen D J Van, Kaslow R A.
Interleukin 10 polymorphisms as predictors of sustained response in antiviral therapy
for chronic hepatitis C infection.
Hepatology.
2001;
33
708-712
- 39
Loguercio C, Caporaso N, Tuccillo C, Morisco F, Vecchio-Blanco G Del, Vecchio-Blanco C
Del.
Alpha-glutathione transferases in HCV-related chronic hepatitis: a new predictive
index of response to interferon therapy?.
J Hepatol.
1998;
28
390-395
- 40
Tilg H, Diehl A M.
Cytokines in alcoholic and nonalcoholic steatohepatitis.
NEJM.
2000;
343
1467-1476
- 41
Lin M T, Wang M Y, Liaw K Y, Lee P H, Chien S F, Tsai J S, Lin-Shiau S Y.
Superoxide dismutase in hepatocellular carcinoma affects patient prognosis.
Hepatogastroenterology.
2001;
48
1102-1105
Dr. Heinz Steltzer
Department of Anesthesiology und General Intensive Care · Vienna General Hospital
· University of Vienna
Waehringer Guertel 18 - 20
1090 Vienna · Austria, Europe
eMail: heinz.steltzer@akh-wien.ac.at