References
General references:
<A NAME="RG26303ST-1A">1a</A>
Tsuji J.
Palladium Reagents and Catalysis: Innovations in Organic Synthesis
John Wiley;
Chichester:
1995.
<A NAME="RG26303ST-1B">1b</A>
Farina V.
Krishnamurthy V.
Scott WJ.
Org. React.
1997,
50:
1
<A NAME="RG26303ST-1C">1c</A>
Negishi E.-i.
Liu F. In Metal-Catalyzed Cross-Coupling Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
Weinheim:
1998.
p.1-42
<A NAME="RG26303ST-1D">1d</A>
Mitchell TN. In Metal-Catalyzed Cross-Coupling Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
Weinheim:
1998.
p.167-197
<A NAME="RG26303ST-1E">1e</A>
Boudier A.
Bromm LO.
Lotz M.
Knochel P.
Angew. Chem. Int. Ed
2000,
39:
4414 ; Angew. Chem. 2000, 112, 4584
<A NAME="RG26303ST-1F">1f</A>
Poli G.
Giambastiani G.
Heumann A.
Tetrahedron
2000,
56:
5959
<A NAME="RG26303ST-1G">1g</A>
Hill EA. In Grignard Reagents - New Developments
Richey HG.
John Wiley & Sons;
Chichester:
2000.
p.27-64
<A NAME="RG26303ST-1H">1h</A>
Chemler SR.
Trauner D.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2001,
40:
4544 ; Angew. Chem. 2001, 113, 4676
See for example:
<A NAME="RG26303ST-2A">2a</A> 2,4-Dibromothiazole:
Bach T.
Heuser S.
J. Org. Chem.
2002,
67:
5789 ; and literature cited therein
<A NAME="RG26303ST-2B">2b</A> 2,3-Dibromofuran-5-carboxylate:
Bach T.
Krüger L.
Synlett
1998,
1185 ; and literature cited therein
<A NAME="RG26303ST-2C">2c</A> 2-Bromo-1-cyclohexenyl triflate (in contrast to 1,2-dibromocyclohexene):
Voigt K.
von Zezschwitz P.
Rosauer K.
Lansky A.
Adams O.
Reiser O.
de Meijere A.
Eur. J. Org. Chem.
1998,
1521
<A NAME="RG26303ST-2D">2d</A> and:
von Zezschwitz P.
Petry F.
de Meijere A.
Chem.-Eur. J
2001,
7:
4035 ; and literature cited therein
<A NAME="RG26303ST-2E">2e</A> 1,2-Dibromobenzene:
Wegener HA.
Scott LT.
de Meijere A.
J. Org. Chem.
2003,
68:
883 ; and literature cited therein
<A NAME="RG26303ST-2F">2f</A> 3,4-Dibromo- and 2,3-dichloro-2(5H)-furanone:
Bellina F.
Anselmi C.
Martina F.
Rossi R.
Eur. J. Org. Chem.
2003,
2290 ; and literature cited therein
<A NAME="RG26303ST-3A">3a</A> Dibromomethylenation:
Ramirez F.
Desai NB.
McKelvie N.
J. Am. Chem. Soc.
1962,
84:
1745
<A NAME="RG26303ST-3B">3b</A> Br,Li exchange/rearrangement:
Köbrich G.
Trapp H.
Flory K.
Drischel W.
Chem. Ber.
1966,
99:
689
<A NAME="RG26303ST-3C">3c</A> Sequential dibromomethylenation/Br,Li exchange/rearrangement:
Corey EJ.
Fuchs PL.
Tetrahedron Lett.
1972,
3769
With organomagnesiums:
<A NAME="RG26303ST-4A">4a</A>
Minato A.
Suzuki K.
Tamao K.
J. Am. Chem. Soc.
1987,
109:
1257 ; gem-dichloroalkenes
<A NAME="RG26303ST-4B">4b</A>
Bryant-Friedrich A.
Neidlein R.
Synthesis
1995,
1506
<A NAME="RG26303ST-4C">4c</A>
Braun M.
Rahematpura J.
Bühne C.
Paulitz TC.
Synlett
2000,
1070
With organozincs:
<A NAME="RG26303ST-5A">5a</A>
Ref.
[4a]
(gem-dichloroalkenes).
<A NAME="RG26303ST-5B">5b</A>
Minato A.
J. Org. Chem.
1991,
56:
4052
<A NAME="RG26303ST-5C">5c</A>
Panek JS.
Hu T.
J. Org. Chem.
1997,
62:
4912
<A NAME="RG26303ST-5D">5d</A>
Ogasawara M.
Ikeda H.
Hayashi T.
Angew. Chem. Int. Ed.
2000,
39:
1042 ; Angew. Chem. 2000, 112, 1084
<A NAME="RG26303ST-5E">5e</A>
Shi J.-c.
Zeng X.
Negishi E.-i.
Org. Lett.
2003,
5:
1825
With organocoppers:
<A NAME="RG26303ST-6A">6a</A>
Uenishi J.
Matsui K.
Ohmiya H.
J. Organomet. Chem.
2002,
653:
141
<A NAME="RG26303ST-6B">6b</A>
Uenishi J.
Matsui K.
Tetrahedron Lett.
2001,
42:
4353
<A NAME="RG26303ST-7">7</A> With organozirconiums:
Xu C.
Negishi E.-i.
Tetrahedron Lett.
1999,
40:
431
With organoborons:
<A NAME="RG26303ST-8A">8a</A>
Roush WR.
Brown BB.
Drozda SE.
Tetrahedron Lett.
1988,
29:
3541
<A NAME="RG26303ST-8B">8b</A>
Roush WR.
Moriarty KJ.
Brown BB.
Tetrahedron Lett.
1990,
31:
6509
<A NAME="RG26303ST-8C">8c</A>
Baldwin JE.
Chesworth R.
Parker JS.
Russell AT.
Tetrahedron Lett.
1995,
36:
9551
<A NAME="RG26303ST-8D">8d</A>
Roush WR.
Koyama K.
Curtin ML.
Moriarty KJ.
J. Am. Chem. Soc.
1996,
118:
7502
<A NAME="RG26303ST-8E">8e</A>
Roush WR.
Reilly ML.
Koyama K.
Brown BB.
J. Org. Chem.
1997,
62:
8708
<A NAME="RG26303ST-8F">8f</A>
Hanisch I.
Brückner R.
Synlett
2000,
374
<A NAME="RG26303ST-8G">8g</A>
Shen W.
Synlett
2000,
737
<A NAME="RG26303ST-8H">8h</A>
Frank SA.
Chen H.
Kunz RK.
Schnaderbeck MJ.
Roush WR.
Org. Lett.
2000,
17:
2691
With organotins:
<A NAME="RG26303ST-9A">9a</A>
Shen W.
Wang L.
Tetrahedron Lett.
1998,
39:
7625
<A NAME="RG26303ST-9B">9b</A>
Shen W.
Wang L.
J. Org. Chem.
1999,
64:
8873
<A NAME="RG26303ST-10A">10a</A>
Ma S.
Xu B.
Ni B.
J. Org. Chem.
2000,
65:
8532
<A NAME="RG26303ST-10B">10b</A>
Moller B.
Undheim K.
Eur. J. Org. Chem.
2003,
332
<A NAME="RG26303ST-11A">11a</A>
Brückner R.
Chem. Commun.
2001,
141
<A NAME="RG26303ST-11B">11b</A>
Brückner R.
Curr. Org. Chem.
2001,
5:
679
<A NAME="RG26303ST-12A">12a</A>
Knight DW.
Contemp. Org. Synth.
1994,
1:
287
<A NAME="RG26303ST-12B">12b</A>
Negishi E.-i.
Kotora M.
Tetrahedron
1997,
53:
6707
<A NAME="RG26303ST-12C">12c</A>
Rossi R.
Bellina F. In Targets in Heterocyclic Systems: Chemistry and Properties
Vol. 5:
Attanasi OA.
Spinelli D.
Società Chimica Italiana;
Roma:
2002.
p.169-198
<A NAME="RG26303ST-12D">12d</A>
Carter NB.
Nadany AE.
Sweeney JB.
J. Chem. Soc., Perkin Trans. 1
2002,
2324
<A NAME="RG26303ST-13">13</A>
Brückner R.
Suffert J.
Synlett
1999,
657 ; and literature cited therein
<A NAME="RG26303ST-14">14</A>
Dubois E.
Beau J.-M.
J. Chem. Soc., Chem. Commun.
1990,
1191
<A NAME="RG26303ST-15">15</A>
Kim W.-S.
Kim H.-J.
Cho C.-G.
Tetrahedron Lett.
2002,
43:
9015
<A NAME="RG26303ST-16">16</A>
Trecourt F.
Mallet M.
Mongin F.
Quéguiner G.
Tetrahedron
1995,
51:
11743
<A NAME="RG26303ST-17">17</A>
Wolff L.
Rüdel F.
Liebigs Ann.
1896,
294:
183 ; Structural assignments: Ref.(2); ref. (Z-5)
<A NAME="RG26303ST-18">18</A>
Manny AJ.
Kjelleberg S.
Kumar N.
de Nys R.
Read RW.
Steinberg P.
Tetrahedron
1997,
51:
15813
<A NAME="RG26303ST-19A">19a</A>
Koch H.
Pirsch J.
Monatsh. Chem.
1962,
93:
661
<A NAME="RG26303ST-19B">19b</A>
Wells PR.
Aust. J. Chem.
1963,
16:
165
<A NAME="RG26303ST-20">20</A>
5-(Dibromomethylene)-2(5
H
)-furanone (
2): 3,5-Dibromolevulinic acid (6; 4.77 g, 17.4 mmol), oleum (18 mL, 65% SO3), and concentrated H2SO4 (9 mL) were stirred at 50-60 °C for 6 min. The solution was poured on ice and extracted
with CH2Cl2 (3 × 30 mL). The combined organic extracts were dried (Na2SO4) and evaporated under reduced pressure. After flash chromatography on silica gel
[22]
(cyclohexane:EtOAc 15:1Æ5:1) compound 2 (1.22 g, 28%) was obtained as a slightly yellow solid (mp 132-134 °C). 1H NMR (300 MHz, CDCl3): δ = 6.41 (d, J
3,4 = 5.6 Hz, 3-H), 7.67 (d, J
4,3 = 5.6 Hz, 4-H).
<A NAME="RG26303ST-21">21</A>
(
Z
)-4-Bromo-5(bromomethylene)-2(5
H
)-furanone (
Z-
5): 3,5-Dibromolevulinic acid (6; 912 mg, 3.33 mmol) and concentrated H2SO4 (20 mL) were stirred at r.t. for 20 min and at 85 °C for 30 min. The solution was
poured on ice and extracted with CH2Cl2 (3 × 30 mL). The combined organic extracts were dried (Na2SO4) and evaporated under reduced pressure. After flash chromatography on silica gel
[22]
(cyclohexane:EtOAc 15:1Æ5:1) compound Z-5 (346 mg, 41%) was obtained as a slightly yellow solid (mp 96-97 °C). 1H NMR (300 MHz, CDCl3): δ = 6.41 (s, 1′-H), 6.50 (s, 3-H).
<A NAME="RG26303ST-22">22</A>
Still WC.
Kahn M.
Mitra A.
J. Org. Chem.
1978,
43:
2923
<A NAME="RG26303ST-23">23</A>
Labadie JW.
Tueting D.
Stille JK.
J. Org. Chem.
1983,
48:
4634
<A NAME="RG26303ST-24">24</A> Method:
Gilman H.
Rosenberg SD.
J. Am. Chem. Soc.
1953,
75:
2507
<A NAME="RG26303ST-25A">25a</A>
Farina V.
Pure Appl. Chem.
1996,
68:
73
<A NAME="RG26303ST-25B">25b</A>
Entwistle DA.
Jordan SI.
Montgomery J.
Pattenden G.
Synthesis
1998,
603
<A NAME="RG26303ST-25C">25c</A>
Amatore C.
Bahsoun AA.
Jutand A.
Meyer G.
Ntepe AN.
Ricard L.
J. Am. Chem. Soc.
2003,
125:
4212
<A NAME="RG26303ST-26">26</A>
The stereochemical problem was clarified by the (albeit small) NOE observed at 2′-H
(δ = 7.28 ppm in CDCl3) while irradiating 4-H (δ = 8.02 ppm) of the isomer labeled E-7. The regiochemistry problem was solved by the occurrence of two vicinal Csp2
-H/Csp2
-H couplings (J = 11.7 Hz, 15.8 Hz) for the olefinic protons of the isomer designated Z-13 as contrasting with only one such coupling (J = 16.1 Hz) in the isomer designated Z-17. The same answer came from the occurrence of one olefinic 1H NMR singlet in Z-13 (δ = 6.21 ppm) as opposed to two such singlets in Z-17 (δ = 6.28 and 6.31 ppm).
<A NAME="RG26303ST-27">27</A>
The differentiation of compound Z-9 from stereoisomer E-9 followed from irradiating 4-H (δ = 7.87 ppm in CDCl3) and the resulting increase of absorption by 2′-H (δ = 7.07 ppm). Butenolide Z-14 was distinguished from the isomeric structure iso-14 by the occurrence of two olefinic 3-bond H,H couplings (J
1
′
,2
′ = 11.4 Hz, J
3
′
,2
′ = 15.8 Hz) rather than one. Monocoupling product Z-16 was differentiated from regioisomer iso-16 by an NOE experiment: irradiation of ortho-H (δ = 7.78-7.83 ppm in CDCl3) enhanced only the absorption by 1′-H (δ = 6.36 ppm) and not by 1′-H and 3-H as expected
for iso-16.
<A NAME="RG26303ST-28">28</A>
(
Z
)-4-Bromo-5-(
trans
-3-phenyl-2-propenylidene)-2(5
H
)-furanone (
Z
-14): 1H NMR (300 MHz, CDCl3): δ = 6.30 (d, J
1
′
,2
′ = 11.4 Hz, 1′-H), 6.37 (s, 3-H), 6.93 (d, J
3
′
,2
′ = 15.8 Hz, 3′-H), 7.25-7.41 (m, 2′-H, 2 × meta-H, para-H), 7.50-7.53 (m, 2 × ortho-H). 13C NMR (125.7 MHz, CDCl3): δ = 114.51 (C-1′), 119.11 (C-3), 121.01 (C-2′), 127.40 (2 × C
ortho
), 128.92 (2 × C
meta
), 129.41 (C
para
), 136.11 and 136.19 (C-4, C
ipso
), 140.13 (C-3′), 147.23 (C-5), 166.64 (C-2). Anal. Calcd for C13H9BrO2 (276.5): C, 56.34; H, 3.27. Found: C, 56.36; H, 3.19.
<A NAME="RG26303ST-29">29</A>
(
Z
)-5-(1-Bromo-1-phenylmethylene)-2(5
H
)-furanone (
Z
-11): 1H NMR (300 MHz, CDCl3): δ = 6.31 (d, J
3,4 = 5.6 Hz, 3-H), 7.41-7.49 (m, C6H5 and 4-H). 13C NMR (75.4 MHz, CDCl3): δ = 110.88 (C-1′), 120.80 (C-3), 128.75 and 130.11 (2 × C
ortho
, 2 × C
meta
), 130.23 (C
para
), 135.39 (C
ipso
), 140.88 (C-4), 149.10 (C-5), 168.46 (C-2). Anal. Calcd for C11H7BrO2 (250.5): C, 52.62; H, 2.81. Found: C, 52.66; H, 2.70.
<A NAME="RG26303ST-30A">30a</A>
Uenishi J.
Kawahama R.
Shiga Y.
Yonemitsu O.
Tetrahedron Lett.
1996,
37:
6759
<A NAME="RG26303ST-30B">30b</A>
Uenishi J.
Kawahama R.
Yonemitsu O.
Tsuji J.
J. Org. Chem.
1996,
61:
5716
<A NAME="RG26303ST-30C">30c</A>
Uenishi J.
Kawahama R.
Yonemitsu O.
Tsuji J.
J. Org. Chem.
1998,
63:
8965
<A NAME="RG26303ST-30D">30d</A>
Tietze LF.
Nöbel T.
Spescha M.
J. Am. Chem. Soc.
1998,
120:
8971
<A NAME="RG26303ST-31">31</A>
While we debrominated 1,1-dibromoolefin 2 using Pd(PPh3)4 and HSnBu3 (ÆZ-10, Scheme
[4]
) the same reagents
[30]
or variations thereof [Pd(PPh3)4/HSiEt3 or HSi(SiMe3)3 or NH4HCO2; Pd(dba)2 or NiCl2(PPh3)2/HSnBu3] failed to reduce 1,3-dibromodiene Z-5 due to inertness (15 was not formed, Scheme
[5]
).
Method, albeit without sonication:
<A NAME="RG26303ST-32A">32a</A>
Villa MJ.
Lete E.
Badia D.
Dominguez E.
J. Chem. Res., Synop.
1987,
418
<A NAME="RG26303ST-32B">32b</A>
Farmer EH.
Healey AT.
J. Chem. Soc.
1927,
1060
<A NAME="RG26303ST-33">33</A>
The C1
′ = Cγ configuration of debromination product E-8 followed from the NOE’s induced by irradiating, in CDCl3 solution, 4-H (δ = 7.84 ppm): The absorption of 1′-H (δ = 6.50 ppm) remained unaltered
while the absorption of 2′-H (δ = 7.02 ppm) increased. In Z-8 an analogous assignment was impossible because the resonances of 4-H and 2′-H overlapped.
The C1
′ = Cγ configurations of the debromination products E-12 and Z-12 were established by the absence(presence) of an NOE at 1′-H (δ = 6.81 ppm and δ =
6.03 ppm, respectively, in CDCl3) when irradiating 4-H (δ = 7.82 ppm and δ = 7.49 ppm, respectively).
<A NAME="RG26303ST-34">34</A>
Xu D.
Sharpless KB.
Tetrahedron Lett.
1994,
35:
4686
<A NAME="RG26303ST-35">35</A>
Pohmakotr M.
Tuchinda P.
Premkaisorn P.
Reutrakul V.
Tetrahedron
1998,
54:
11297
<A NAME="RG26303ST-36">36</A>
Rousset S.
Abarbri M.
Thibonnet J.
Duchêne A.
Parrain J.-L.
Org. Lett.
1999,
1:
701
Alternative ways to alkylidenebutenolides of this substitution pattern:
<A NAME="RG26303ST-37A">37a</A>
Negishi E.-i.
Kotora M.
Synthesis
1997,
121
<A NAME="RG26303ST-37B">37b</A>
Boukouvalas J.
Lachance N.
Ouellet M.
Trudeau M.
Tetrahedron Lett.
1998,
39:
7665
<A NAME="RG26303ST-37C">37c</A>
Rousset S.
Thibonnet J.
Abarbri M.
Duchêne A.
Parrain J.-L.
Synlett
2000,
260
<A NAME="RG26303ST-38A">38a</A>
Sorg, A. Dissertation (in progress)
<A NAME="RG26303ST-38B">38b</A>
Brückner R.
Siegel K.
Sorg A. In Strategies and Tactics in Natural Product Synthesis
Vol. 5:
Harmata M.
Elsevier/Academic Press;
Orlando:
p.in press