Synthesis 2003(17): 2647-2654  
DOI: 10.1055/s-2003-42475
PAPER
© Georg Thieme Verlag Stuttgart · New York

An Expedient Synthesis of Cationic Rhodamine Fluorescent Probes Suitable for Conjugation to Amino Acids and Peptides

Carlos A. M. Afonsoa, V. Santhakumarb, Alan Loughb, Robert A. Batey*b
a Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal
e-Mail: cma@dq.fct.unl.pt;
b Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
Fax: +1(416)9785059; e-Mail: rbatey@chem.utoronto.ca;
Further Information

Publication History

Received 8 November 2002
Publication Date:
21 November 2003 (online)

Abstract

Rhodamine 19 benzyloxycarbonylmethyl ester bromide 8 and rhodamine 19 4-chloromethyl-1-phenylmethyl ester chloride 12 act as precursors to cationic fluorescent probes. Molecules containing free amine or carboxylate functional groups, respectively, can be attached in a one-step procedure, yielding the desired probes without the need for chromatographic purification. As a proof of concept the method was applied to the attachment of amino acid and dipeptide residues through either the N- or C-termini. The precursor molecules 8 and 12 are readily synthesized from the inexpensive, commercially available dye rhodamine 6G.

    References

  • 1 Valeur B. Molecular Fluorescence: Principles and Applications   Wiley-VCH; Weinheim: 2002. 
  • 2a Haugland RP. Handbook of Fluorescent Probes and Research Products   Molecular Probes, Inc.; Eugene: 2001.  and references cited therein
  • 2b Probe Design and Chemical Sensing, In Topics in Fluorescence Spectroscopy   Vol. 4:  Lakowicz JR. Plenum Press; New York: 1994. 
  • 2c Scala-Valéro C. Doizi D. Guillaumet G. Tetrahedron Lett.  1999,  40:  4803 
  • 3a Rahavendran SV. Karnes HT. Anal. Chem.  1996,  68:  3763 
  • 3b Soper SA. McGown LB. Warner IM. Anal. Chem.  1994,  66:  428R 
  • 4a Finney NS. Curr. Opin. Drug Discovery Dev.  1998,  1:  98 
  • 4b Lescrinier T. Hendrix C. Kerremans L. Rozenski J. Link A. Samyn B. Aerschot AV. Lescrinier E. Eritja R. Beeumen JV. Herdewijn P. Chem.-Eur. J.  1998,  4:  425 
  • 5a Mitchison TJ. Sawin KE. Theriot JA. Gee K. Mallavarapu A. Caged Compounds, In Methods in Enzymology   Vol. 291:  Marriott G. Academic Press; New York: 1998.  p.63 
  • 5b Boturyn D. Boudali A. Constant J.-F. Defrancq E. L’homme J. Tetrahedron  1997,  53:  5485 
  • 5c Harapanhalli RS. Roy AM. Adelstein SJ. Kassis A. J. Med. Chem.  1998,  41:  2111 
  • 5d Mayer A. Neuenhofer S. Angew. Chem., Int. Ed. Engl.  1994,  33:  1044 
  • 5e Kojima H. Hirotani M. Urano Y. Kikuchi K. Higuchi T. Nagano T. Tetrahedron Lett.  2000,  41:  69 
  • 6 Davie E. Morris JH. Smith E. Org. Mass Spectrom.  1974,  763 
  • 7 Cai SX. Zhang H.-Z. Guastella J. Drewe J. Yang W. Weber E. Bioorg. Med. Chem. Lett.  2001,  11:  39 
  • 8a Bain AJ. Chandna P. Butcher G. Bryant J. J. Chem. Phys.  2000,  112:  10435 
  • 8b Byassee TA. Chan WC. Nie S. Anal. Chem.  2000,  72:  5606 
  • 8c Fang X. Tan W. Anal. Chem.  1999,  71:  3101 
  • 8d Mandala M. Serck-Hanssen G. Martino G. Helle KB. Anal. Biochem.  1999,  274:  1 
  • 8e Nie S. Chiu DT. Zare RN. Science  1994,  266:  1018 
  • 8f Matsumoto Y. Sasaoka N. Tsuchida T. Fujiwara T. Nagao S. Ohmoto T. J. Neurooncol.  1992,  13:  217 
  • 8g Choi KJ. Turkevich LA. Loza R. J. Phys. Chem.  1988,  92:  2248 
  • 8h Kuzela S. Joste V. Nelson BD. Eur. J. Biochem.  1986,  154:  553 
  • 9 Heilporn S. Broeders F. Daloze D. Braekman JC. Boeynaems JM. Bull. Soc. Chim. Belg.  1994,  103:  309 
  • 10 Gallo EA. Gellman SH. J. Am. Chem. Soc.  1993,  115:  9774 
  • 11 For a similar linking strategy for peptides to fluoresceins and their application as fluorescent reporters, see: Chen C.-A. Yeh R.-H. Lawrence DS. J. Am. Chem. Soc.  2002,  124:  3840 
  • 12a Adamczyk M. Grote J. Bioorg. Med. Chem. Lett.  2000,  10:  1539 
  • 12b Cincotta L, and Foley JW. inventors; U.S. Patent  4,290,955. See also:
  • 13a Mayer U, and Oberlinner A. inventors; U.S. Patent  4,647,675. 
  • 13b Arnost MJ, Meneghini FA, Palumbo PS, and Stroud SG. inventors; U.S. Patent  4,900,686. 
  • 13c Mayer U, and Oberlinner A. inventors; U.S. Patent  4,935,059. 
  • 13d Haugland RP, Singer VL, and Yue ST. inventors; U.S. Patent  6,399,392. 
  • 14 Wakamiya T. Saruta K. Yasuoka J.-I. Kusumoto S. Bull. Chem. Soc. Jpn.  1995,  68:  2699 
  • 18 Parker CA. Photoluminescence of Solutions   Elsevier; Amsterdam: 1968. 
  • 19 Kohno Y. Narasaka K. Bull. Chem. Soc. Jpn.  1995,  68:  322 
15

The relative quantum yields at 495 nm of derivatives 10, 13 and 15 were 1.26, 1.03 and 0.95 × that of rhodamine 6G respectively (see Ref. [18] for the method used).

16

The crystals of compound 14 were obtained by crystallization from Et2O-EtOH: C41H46IN3O7, M = 819.71, triclinic, space group P-1, a = 12.6230(2), b = 13.4724(3), c = 13.5600(3) Å, α = 101.865(1), β = 107.003(1), γ = 113.602(1)°, V = 1878.77(7) Å3, Z = 2, Dc = 1.449 gcm-3, µ = 0.907 mm-1, F(000) = 844, crystal dimensions 0.35 × 0.32 × 0.28 mm3. The intensities of 28224 reflections were measured on a Nonius Kappa-CCD diffractometer (MoKα radiation, T = 100.0(1) K, 4.19 < θ < 30.48, 10822 unique reflections). The structure was solved and refined using the SHELXTL package (see Ref. [17] ). Non-hydrogen atoms were assigned anisotropic thermal parameters. Hydrogen atoms were included in calculated positions and treated as riding atoms. The refinement which included 469 parameters, converged with R1[I>2σ(I)] = 0.0375 (for 8449 reflections with I>2σ(I)) and wR2 (all unique data) = 0.0970. Atomic coordinates and further crystallographic details have been deposited at the Cambridge Crystallographic Data Centre, deposition number CCDC-191818, and copies of this data can be obtained in application to CCDC, 12, Union Road, Cambridge CB2 1EZ, UK. [Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk].

17

Sheldrick, G. M. SHELXTL/PC Version 5.1, Windows NT Version, Bruker AXS Inc., Madison, USA.