Abstract
The rational design of a highly stereoselective E1+E2+A aldol-aldol route (using two
different enolates E1,E2 and one aldehyde A) to tetrahydropyran-2,4-diols was based
on screening group IVa and IVb metal bound enolate/aldolate hybrides in their potential
to undergo aldol vs. retro-aldol reactions. Tin(IV) proved superior to all other metal ions since only
a negligible amount of retro-aldol reaction is triggered. In the following, this property
of tin(IV) was exploited to set up a highly stereoselective E1+E2+A route that allows
the assembly of tetrahydropyran-2,4-diols with a wide variety of substituent patterns.
The results obtained for open-chain enolates lends weight to the argument that a chair-boat
transition state occurs in the last aldol step, while a boat-boat transition state
may operate in the presence of cyclic enolates.
Key words
enolate - aldol reaction - tin(IV) - stereoselective assembly - domino process
References
<A NAME="RZ08403SS-1A">1a</A>
Claisen L.
Justus Liebigs Ann. Chem.
1896,
291:
25
<A NAME="RZ08403SS-1B">1b</A>
Heathcock CH. In Modern Synthetic Methods
Vol. 6:
Scheffold R.
VHCA;
Basel:
1992.
p.1
<A NAME="RZ08403SS-1C">1c</A>
Mekelburger HB.
Wilcox CS. In Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Pergamon Press;
Oxford:
1991.
p.99
<A NAME="RZ08403SS-1D">1d</A>
Mukaiyama T.
Banno K.
Narasaka K.
J. Am. Chem. Soc.
1974,
96:
7503
<A NAME="RZ08403SS-1E">1e</A>
Mukaiyama T.
Org. React.
1982,
28:
203
<A NAME="RZ08403SS-2">2</A>
Evans DA.
Fitch DM.
Smith TE.
Lee VJ.
J. Am. Chem. Soc.
2000,
112:
10033
<A NAME="RZ08403SS-3A">3a</A>
Braun M. In Houben-Weyl, Methods of Organic Chemistry
4th ed. Vol. E21/3:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1996.
p.1603
<A NAME="RZ08403SS-3B">3b</A>
Machajewski TD.
Wong C.-H.
Lerner RA.
Angew. Chem. Int. Ed.
2000,
39:
1352
<A NAME="RZ08403SS-4">4</A>
Tietze LF.
Chem. Rev.
1996,
96:
115
Aldol reaction as first step in a domino process:
<A NAME="RZ08403SS-5A">5a</A>
Galatsis P.
Millan SD.
Nechala P.
Ferguson G.
J. Org. Chem.
1994,
59:
6643
<A NAME="RZ08403SS-5B">5b</A>
Bodnar PM.
Shaw JT.
Woerpel KA.
J. Org. Chem.
1997,
62:
5674
<A NAME="RZ08403SS-5C">5c</A>
Yang HW.
Zhao CX.
Romo D.
Tetrahedron
1997,
53:
16471
<A NAME="RZ08403SS-5D">5d</A>
Kabalka GW.
Tejedor D.
Li N.-S.
Malladi RR.
Trotman S.
J. Org. Chem.
1998,
63:
6438
<A NAME="RZ08403SS-5E">5e</A>
Lu L.
Chang H.-Y.
Fang J.-M.
J. Org. Chem.
1999,
64:
843
<A NAME="RZ08403SS-5F">5f</A>
Delas C.
Blacque O.
Moise C.
J. Chem. Soc., Perkin Trans. 1
2000,
2265
<A NAME="RZ08403SS-5G">5g</A>
Schneider C.
Hansch M.
Chem. Commun.
2001,
1218
<A NAME="RZ08403SS-5H">5h</A>
Wang X.
Meng Q.
Nation AJ.
Leighton JL.
J. Am. Chem. Soc.
2002,
124:
10672
<A NAME="RZ08403SS-5I">5i</A>
Oelgemöller M.
Fukui K.
Hesek D.
Aoki F.
Niki M.
Inoue Y.
Heterocycles
2002,
57:
741
Aldol reaction as second step in a domino process:
<A NAME="RZ08403SS-6A">6a</A>
Arai T.
Sasai H.
Aoe K.
Okamura K.
Date T.
Shibasaki M.
Angew. Chem., Int. Ed. Engl.
1996,
35:
104
<A NAME="RZ08403SS-6B">6b</A>
Feringa BL.
Pineschi M.
Arnold LA.
Imbos R.
De Vries AHM.
Angew. Chem. Int. Ed.
1997,
36:
2620
<A NAME="RZ08403SS-6C">6c</A>
Ono M.
Nishimura K.
Nagaoka Y.
Tomioka K.
Tetrahedron Lett.
1999,
40:
1509
<A NAME="RZ08403SS-6D">6d</A>
Huang X.
Xie MH.
Org. Lett.
2002,
4:
1331
<A NAME="RZ08403SS-6E">6e</A>
Langer P.
Saleh NNR.
Freifeld I.
Chem. Commun.
2002,
168
<A NAME="RZ08403SS-6F">6f</A>
Bilodeau F.
Dube L.
Deslongchamps D.
Tetrahedron
2003,
59:
2781
<A NAME="RZ08403SS-6G">6g</A>
Cauble DF.
Gipson JD.
Krische MJ.
J. Am. Chem. Soc.
2003,
125:
1110
<A NAME="RZ08403SS-7A">7a</A>
Henne AL.
Hinkamp PE.
J. Am. Chem. Soc.
1954,
76:
5147
<A NAME="RZ08403SS-7B">7b</A>
Moore RA.
Levine R.
J. Org. Chem.
1964,
29:
1439
<A NAME="RZ08403SS-7C">7c</A>
Drakesmith FG.
Stewart OJ.
Tarrant P.
J. Org. Chem.
1968,
33:
280
<A NAME="RZ08403SS-7D">7d</A>
Rollin P.
Bull. Soc. Chem. Fr.
1973,
1509
<A NAME="RZ08403SS-7E">7e</A>
Dhingra MM.
Tatta KR.
Org. Magn. Reson.
1977,
9:
23
<A NAME="RZ08403SS-7F">7f</A>
Barba F.
de la Fuente JL.
J. Org. Chem.
1996,
61:
8662
<A NAME="RZ08403SS-8A">8a</A>
Schmittel M.
Burghart A.
Malisch W.
Reising J.
Söllner R.
J. Org. Chem.
1998,
63:
396
<A NAME="RZ08403SS-8B">8b</A>
Schmittel M.
Haeuseler A.
J. Organomet. Chem.
2003,
661:
169 ; and literature therein
<A NAME="RZ08403SS-9A">9a</A>
Schmittel M.
Ghorai MK.
Haeuseler A.
Henn W.
Koy T.
Söllner R.
Eur. J. Org. Chem.
1999,
2007
<A NAME="RZ08403SS-9B">9b</A>
Schmittel M.
Ghorai MK.
Synlett
2001,
1992
<A NAME="RZ08403SS-10">10</A>
Schmittel, M.; Haeuseler, A.; Henn, W.; Ghorai, M. K.; Koy, T. manuscript in preparation.
<A NAME="RZ08403SS-11">11</A>
Schmittel M.
Haeuseler A.
Nilges T.
Pfitzner A.
Chem. Commun.
2003,
34
<A NAME="RZ08403SS-12">12</A>
Engelen, B.; Deiseroth, H.-J.; Panthöfer, M.; Schlirf, J. private communication.
<A NAME="RZ08403SS-13">13</A>
Yamamoto Y.
Yamada J.-i.
J. Chem. Soc., Chem. Commun.
1988,
802
<A NAME="RZ08403SS-14A">14a</A>
Mukaiyama T.
Iwasawa N.
Stevens RW.
Haga T.
Tetrahedron
1984,
40:
1381
<A NAME="RZ08403SS-14B">14b</A>
Mukaiyama T.
Suzuki H.
Yamada T.
Chem. Lett.
1986,
915
<A NAME="RZ08403SS-15A">15a</A> To describe the relative configuration we have used the syn,anti nomenclature as recommended by Masamune:
Masamune S.
Kaiho T.
Garvey DS.
J. Am. Chem. Soc.
1982,
104:
5521
<A NAME="RZ08403SS-15B">15b</A>
In order to have no nomenclature disparity between open and cyclic compounds the cyclic
hemiacetals are stereochemically analysed as R4-C(OH)(OX)-CH(R5)-C(OH)R1-CH(R2)-CH(OX)-R3 (in a zig-zag arrangement) with OX being the acetal linkage
<A NAME="RZ08403SS-16">16</A>
Koy T.
PhD Thesis
University of Siegen;
Germany:
2002.
<A NAME="RZ08403SS-17">17</A>
Denmark SE.
Stavenger RA.
Wong K.-T.
Tetrahedron
1998,
54:
10389
<A NAME="RZ08403SS-18">18</A>
Heathcock CH.
Buse CT.
Kleschick WA.
Pirrung MC.
Sohn JE.
Lampe J.
J. Org. Chem.
1980,
45:
1066
<A NAME="RZ08403SS-19A">19a</A>
Yoshida Y.
Hayashi R.
Sumihara H.
Tanabe Y.
Tetrahedron Lett.
1997,
38:
8727
<A NAME="RZ08403SS-19B">19b</A>
Yoshida Y.
Matsumoto N.
Hamasaki R.
Tanabe Y.
Tetrahedron Lett.
1999,
40:
4227
<A NAME="RZ08403SS-20">20</A>
Izutsu K.
Acid-Base Dissociation Constants in Dipolar Aprotic Solvents
Blackwell;
Oxford:
1990.
<A NAME="RZ08403SS-21">21</A>
Zook HD.
Miller JA.
J. Org. Chem.
1971,
36:
1112
<A NAME="RZ08403SS-22">22</A>
Proven also by x-ray structure analysis: Deiseroth, H.-J.; Schlirf, J. personal communication.
<A NAME="RZ08403SS-23">23</A>
Allinger NL.
J. Am. Chem. Soc.
1977,
99:
8127
<A NAME="RZ08403SS-24">24</A>
Angelo JD.
Tetrahedron
1976,
32:
2979
<A NAME="RZ08403SS-25">25</A>
Spears GW.
Caufield CE.
Still WC.
J. Org. Chem.
1987,
52:
1226
<A NAME="RZ08403SS-26">26</A>
Harada T.
Mukaiyama T.
Chem. Lett.
1982,
467
<A NAME="RZ08403SS-27">27</A>
Aoki Y.
Oshima K.
Utimoto K.
Chem. Lett.
1995,
463