Synlett 2003(15): 2364-2368  
DOI: 10.1055/s-2003-42112
LETTER
© Georg Thieme Verlag Stuttgart · New York

Isoxazolinyl Spironucleosides: Stereoselectivity of 1,3-Dipolar Cycloadditions of 7-Methylenepyrrolo[1,2-c]pyrimidin-1(5H)-ones

Róbert Fischera, Eva Hýrošováa, Alexandra Druckováa, Lubor Fišera*a, Christian Hametnerb, Michał K. Cyrańskic
a Department of Organic Chemistry, Slovak University of Technology, 812 37 Bratislava, Slovak Republic
e-Mail: fisera@cvt.stuba.sk;
b Institute of Applied Synthetic Chemistry, University of Technology, 1060 Vienna, Austria
c Department of Chemistry, University Warsaw, 02 093 Warsaw, Poland
Further Information

Publication History

Received 14 July 2003
Publication Date:
23 October 2003 (online)

Abstract

Novel 7-methylenepyrrolo[1,2-c]pyrimidin-1(5H)-ones 11a-c were synthesized from commercially available orotic acid (6). 1,3-Dipolar cycloadditions of mesitonitrile oxide to the exocyclic double bond of the dipolarophiles 11 proceed with complete regioselectivity and lead to the spiroisoxazolinyl nucleosides 13 and 14 in good yields. Attack of the dipole from the less sterically hindered side of the dipolarophile affords C-5/C-7 trans isoxazolines as major isomers predominantly. The protection of the free hydroxyl group by the bulky substituent (TBDPS) leads to formation C-5/C-7 trans isomer 14c exclusively.

    References

  • 1 Haruyama H. Takayama T. Kinoshita T. Kondo M. Nakajima M. Haneishi T. J. Chem. Soc., Perkin Trans. 1  1991,  1637 
  • 2a Kittaka A. Tanaka H. Odanaka Y. Ohnuki K. Yamaguchi K. Miyasaka T. J. Org. Chem.  1994,  59:  3636 
  • 2b Kittaka A. Asakura T. Kuze T. Tanaka H. Yamada N. Nakamura KT. Miyasaka T. J. Org. Chem.  1999,  64:  7081 
  • 2c Chatgilialoglu C. Gimisis T. Spada GP. Chem.-Eur. J.  1999,  5:  2866 
  • 3 Yoshimura Y. Otter BA. Ueda T. Matsuda A. Chem. Pharm. Bull.  1992,  40:  1761 
  • 4a Merino P. Curr. Med. Chem. -Anti-Infective Agents  2002,  1:  389 
  • 4b Pan S. Amankulor NM. Zhao K. Tetrahedron  1998,  54:  6587 
  • 5a Merino P. Franco S. Merchan FL. Tejero T. J. Org. Chem.  2000,  65:  5575 
  • 5b Chiacchio U. Rescifina A. Corsaro A. Pistara V. Romeo G. Romeo R. Tetrahedron: Asymmetry  2000,  11:  2045 
  • 5c Merino P. Del Alamo EM. Franco S. Merchan FL. Simon A. Tejero T. Tetrahedron: Asymmetry  2000,  11:  1543 
  • 5d Colacino E. Coverso A. Liguori A. Napoli A. Siciliano C. Sindona G. Tetrahedron  2001,  57:  8551 ; and references cited therein
  • 6a Dalpozzo R. De Nino A. Maiuolo L. Procopio A. De Munno G. Sindona G. Tetrahedron  2001,  57:  4035 
  • 6b Iannazzo D. Piperno A. Pistara V. Rescifina A. Romeo R. Tetrahedron  2002,  58:  581 
  • 6c Chiacchio U. Corsaro A. Iannazzo D. Piperno A. Pistara A. Procopio A. Rescifina A. Romeo G. Romeo R. Siciliano MCR. Valveri E. Arkivoc  2002,  159 
  • 7a Chiacchio U. Corsaro A. Iannazzo D. Piperno A. Rescifina A. Romeo R. Romeo G. Tetrahedron Lett.  2001,  42:  1777 
  • 7b Iannazzo D. Piperno A. Pistara V. Rescifina A. Romeo R. Tetrahedron  2002,  58:  581 
  • 8a Fischer R. Drucková A. Fiera L. Rybár A. Hametner C. Cyránski MK. Synlett  2002,  1113 
  • 8b Fischer R. Drucková A. Fiera L. Hametner C. Arkivoc  2002,  80 
  • 9 Gershon H. J. Org. Chem.  1962,  27:  3507 
  • 10 Aldehyde 8 was prepared from 7 by a two-steps process via selective oxidation of the corresponding alcohol in 84% yield: Snider BB. Chaoyu X. Tetrahedron Lett.  1998,  39:  7021 
  • 11 Danel K. Pedersen EB. Nielsen C. Synthesis  1997,  1021 
  • 16a Pereira SM. Savage GP. Simpson GW. Greenwood RJ. Mackay MF. Aust. J. Chem.  1993,  46:  1401 
  • 16b Fiera L. Jaroková L. Matejková I. Heimgartner H. Heterocycles  1995,  1:  271 
  • 16c Micúch P. Fiera L. Ondru V. Ertl P. Molecules  1997,  2:  57 
  • 16d Cheng W.-C. Liu Y. Wong M. Olmstead MM. Lam KS. Kurth MJ. J. Org. Chem.  2002,  67:  5673 
  • 16e Melsa P. Mazal C. Collect. Czech. Chem. Commun.  2002,  67:  353 
12

Procedure for 2,4-Dimethoxy-6-(1-hydroxybut-3-en-1-yl)pyrimidine ( 9a): To a stirred suspension of Zn dust (1.98 g, 7.33 mmol) in anhyd THF (50 mL), allyl bromide (1.62 mL, 18.07 mmol) was added, followed by 2,4-dimethoxy-6-pyrimidinecarbaldehyde (8, 0.60 g, 3.57 mmol) and the mixture was stirred vigorously under reflux for 3 h. The reaction mixture was cooled to r.t., quenched with sat. aq NH4Cl and vigorously stirred with CH2Cl2 (30 mL) for 15 min. The solid was removed by filtration through the Celite® and the organic layer was separated. The aq phase was extracted with CH2Cl2 (20 mL) and the combined organic layers were dried with Na2SO4, filtered and the solvent removed. The final product was purified by the column chromatography on silica gel (hexane-EtOAc, 3:1) giving homoallyl alcohol 9a (0.63 g) as a colourless solid; yield 85%; mp 131-133 °C. 1H NMR (400 MHz, CDCl3): δ = 2.46 (ddddd, J 7,8a = 7.3 Hz, J 8a,8b = 14.3 Hz, J 8a,9 = 7.3 Hz,
J 8a,10a = 1.2 Hz, J 8a,10b = 1.2 Hz, 1 H, H-8a), 2.63 (ddddd,
J 7,8b = 4.7 Hz, J 8a,8b = 14.0 Hz, J 8b,9 = 7.0 Hz, J 8b,10a = 1.5 Hz, J 8b,10b = 1.2 Hz, 1 H, H-8b), 3.37 (d, J 7,OH = 5.0 Hz, 1 H, OH), 3.97, 4.00 (2 × s, 2 × 3 H, OCH3), 4.62 (ddd, J 7,OH = 4.7 Hz, J 7,8a = 7.6 Hz, J 7,8b = 4.7 Hz, 1 H, H-7), 5.13 (dddd, J 8a,10b = 1.2 Hz, J 8b,10b = 1.2 Hz, J 9,10b = 10.2 Hz, J 10a,10b = 1.8 Hz, 1 H, H-10b), 5.14 (dddd, J 8a,10a = 1.5 Hz, J 8b,10a = 1.5 Hz, J 9,10a = 17.0 Hz, J 10a,10b = 2.0 Hz, 1 H, H-10a), 5.81 (dddd, J 8a,9 = 7.0 Hz, J 8b,9 = 7.0 Hz, J 9,10a = 17.0 Hz, J 9,10b = 10.2 Hz, 1 H, H-9), 6.39 (d, J 5,7 = 0.6 Hz, 1 H, H-5). 13C NMR (125 MHz, CDCl3): δ = 42.2 (C-8), 54.4, 55.2 (OCH3), 72.2
(C-7), 97.9 (C-5), 119.0 (C-10), 133.9 (C-9), 165.4 (C-6), 172.5, 173.0 (C-2, C-4).

13

Procedure for 10a: The stirred solution of the homoallyl alcohol 9b (0.20 g, 0.64 mmol) in CHCl3 (20 mL) was warmed to 60 °C and a solution of Br2 (0.10 g, 0.03 mL, 0.64 mmol) in CHCl3 (10 mL) was slowly added dropwise over 4 h. The solvent was removed in vacuo and the reaction products were isolated by column chromatography on silica gel (hexane-EtOAc, 1:1) giving pyrimidinone 10b as a mixture of cis/trans isomers (0.20 g, 82%) as colorless foam.

14

Selected data: 6,7-Dihydro-5-hydroxy-3-methoxy-7-methylenepyrrolo[1,2- c ]pyrimidin-1(5 H )-one ( 11a): Yield 44%; colorless solid; mp 192-193 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 2.60 (dddd, J 5,6a = 6.1 Hz, J 6a,6b = 16.1 Hz, J 6a,10a = 2.1 Hz, J 6a,10b = 2.4 Hz, 1 H, H-6a), 3.07 (dddd, J 5,6b = 8.2 Hz, J 6a,6b = 16.1 Hz, J 6b,10a = 1.5 Hz, J 6b,10b = 1.8 Hz, 1 H, H-6b), 3.86 (s, 3 H, OCH3), 4.89 (dd, J 6a,10a = 2.1 Hz, J 6b,10a = 1.5 Hz, J 10a,10b = 0 Hz, 1 H, H-10a), 4.98 (dddd, J 5,OH = 6.1 Hz, J 4,5 = 1.2 Hz, J 5,6a = 6.1 Hz, J 5,6b = 8.2 Hz, 1 H, H-5), 6.08 (d, J 4,5 = 1.2 Hz, 1 H, H-4), 6.10 (d, J 5,OH = 6.1 Hz, 1 H, OH), 6.14 (dd, J 6a,10b = 2.3 Hz, J 6b,10b = 1.8 Hz, 1 H, H-10b). 13C NMR (125 MHz, DMSO-d 6): δ = 38.2 (C-6), 55.1 (OCH3), 68.0 (C-5), 91.5 (C-4), 99.1 (C-10), 143.1 (C-7), 154.2 (C-1), 164.7 (C-8), 171.6 (C-3). 6,7-Dihydro-5- tert -butyldiphenylsilyloxy-3-methoxy-7-methylenepyrrolo[1,2- c ]pyrimidin-1(5 H )-one ( 11b): Yield 66%; colorless syrup. 1H NMR (400 MHz, CDCl3):
δ = 1.10 [s, 9 H, OSiC(CH3)3], 2.68 (dddd, J 5,6a = 7.9 Hz, J 6a,6b = 15.2 Hz, J 6a,10a = J 6a,10b = 1.2 Hz, 1 H, H-6a), 2.76 (dddd, J 5,6b = 7.3 Hz, J 6a,6b = 15.2 Hz, J 6b,10a = J 6b,10b = 2.3 Hz, 1 H, H-6b), 3.95 (s, 3 H, OCH3), 4.82 (ddd, J 6a,10a = J 10a,10b = 1.2 Hz, J 6b,10a = 2.1 Hz, 1 H, H-10a), 4.98 (ddd, J 4,5 = 1.2 Hz, J 5,6a = 7.9 Hz, J 5,6b = 7.3 Hz, 1 H, H-5), 5.77 (d, J 4,5 = 1.2 Hz, 1 H, H-4), 6.28 (ddd, J 6a,10b = J 10a,10b = 1.2 Hz, J 6b,10b = 2.3 Hz, 1 H, H-10b), 7.40-7.68 (m, 10 H, OSiPh2). 13C NMR (125 MHz, CDCl3): δ = 19.6 [OSiC(CH3)3], 27.2 [OSiC(CH3)3], 39.3 (C-6), 55.2 (OCH3), 70.4 (C-5), 92.0
(C-4), 100.6 (C-10), 128.4, 128.5, 130.8, 132.7, 133.0, 136.1 (OSiPh2), 141.3 (C-7), 154.8 (C-1), 161.9 (C-8), 171.6
(C-3). 6,7-Dihydro-5-benzoyloxy-3-methoxy-7-methylene-pyrrolo[1,2- c ]pyrimidin-1(5 H )-one ( 11c): Yield 80%; colorless syrup. 1H NMR (400 MHz, CDCl3): δ = 2.96 (dddd, J 5,6a = 4.6 Hz, J 6a,6b = 16.9 Hz, J = 1.8 Hz, J = 2.1 Hz, 1 H, H-6a), 3.33 (dddd, J 5,6b = 8.2 Hz, J 6a,6b = 16.9 Hz, J = 1.8 Hz, J = 2.1 Hz, 1 H, H-6b), 3.98 (s, 3 H, OCH3), 5.01 (ddd, J 10a,10b = 1.2 Hz, J = 1.8 Hz, J = 2.1 Hz, 1 H, H-10a), 6.13 (d, J 4,5 = 0.9 Hz, 1 H, H-4), 6.19 (ddd, J 4,5 = 0.9 Hz,
J 5,6a = 4.6 Hz, J 5,6b = 8.2 Hz, 1 H, H-5), 6.46 (ddd, J 10a,10b = 1.2 Hz, J = 1.8 Hz, J = 2.1 Hz, 1 H, H-10b), 7.44-8.04 (m,
5 H, COPh). 13C NMR (125 MHz, CDCl3): δ = 35.4 (C-6), 55.4 (OCH3), 69.8 (C-5), 94.0 (C-4), 101.1 (C-10), 129.1, 130.3, 134.3 (COPh), 141.0 (C-7), 154.8 (C-1), 157.5 (COPh), 166.0 (C-8), 171.5 (C-3).

15

General Procedure: Mesitonitrile oxide 12 and 7-methylenepyrrolo[1,2-c]pyrimidin-1(5H)-one 11 were dissolved in 1,4-dioxane and stirred under reflux. When no starting material remained (TLC), the solvent was removed in vacuo and the products of the cycloaddition were isolated by column chromatography (hexane-ethyl acetate). Selected data: (5,7- trans )-4′,5′,6,7-Tetrahydro-3′-(2,4,6-trimethylphenyl)-3-methoxy-5-hydroxyspiro[pyr-rolo[1,2- c ]pyrimidine-7(5 H ),5′-izoxazol]-1-one ( 14a): Yield 42%; colorless solid; mp 241-243 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 2.26 (s, 3 H, 4-CH3Ph), 2.31 (s, 6 H, 2,6-CH3Ph), 2.41 (dd, J 5,6a = 8.8 Hz, J 6a,6b = 13.7 Hz, 1 H, H-6a), 2.87 (dd, J 5,6b = 7.6 Hz, J 6a,6b = 13.7 Hz, 1 H, H-6b), 3.44 (d, J 4a ,4b = 18.7 Hz, 1 H, H-4a′), 3.85 (s, 3 H, OCH3), 4.22 (d, J 4a ,4b = 18.7 Hz, 1 H, H-4b′), 5.13 (dddd, J 4,5 = 1.5 Hz, J 5,OH = 5.8 Hz, J 5,6a = 8.8 Hz, J 5,6b = 7.3 Hz, 1 H, H-5), 6.05 (d, J 4,5 = 1.2 Hz, 1 H, H-4), 6.29 (d, J 5,OH = 5.8 Hz, 1 H, OH), 6.93 (s, 2 H, Ph). 13C NMR (125 MHz, DMSO-d 6): δ = 20.4 (2,6-CH3Ph), 21.5 (4-CH3Ph), 46.3, 46.4 (C-6, C-4′), 55.1 (OCH3), 68.4 (C-5), 90.7 (C-4), 102.6 (C-5′/C-7), 126.4 (C-4-Ph), 129.2 (CH-Ph), 137.7 (C-2,6-Ph), 139.1 (C-1-Ph), 153.8 (C-1), 158.4 (C-3′), 164.9 (C-4a), 173.1 (C-3).
(5,7- trans )-4′,5′,6,7-Tetrahydro-3′-(2,4,6-trimethyl-phenyl)-3-methoxy-5- tert -butyldiphenylsilyloxy-spiro[pyrrolo[1,2- c ]pyrimidine-7(5 H ),5′-izoxazol]-1-one ( 14c): Yield 79%; colorless solid; mp 214-215 °C. 1H NMR (400 MHz, CDCl3): δ = 1.12 [s, 9 H, OSiC(CH3)3], 2.28 (s, 3 H, 4-CH3Ph), 2.37 (s, 6 H, 2,6-CH3Ph), 2.32 (dd, J 5,6a = 8.8 Hz, J 6a,6b = 13.2 Hz, 1 H, H-6a), 2.67 (dd, J 5,6b = 7.3 Hz, J 6a,6b = 13.2 Hz, 1 H, H-6b), 3.09 (d, J 4a ,4b = 18.4 Hz, 1 H, H-4a′), 3.94 (s, 3 H, OCH3), 4.52 (d, J 4a ,4b = 18.4 Hz, 1 H, H-4b′), 5.25 (ddd, J 4,5 = 1.2 Hz, J 5,6a = 8.8 Hz, J 5,6b = 7.3 Hz, 1 H, H-5), 5.77 (d, J 4,5 = 1.2 Hz 1 H, H-4), 6.89 (s, 2 H, H-Ph), 7.41-7.70 (m, 10 H, OSiPh2). 13C NMR (125 MHz, CDCl3): δ = 19.6 [OSiC(CH3)3], 20.4 (2,6-CH3Ph), 21.5
(4-CH3Ph), 27.3 [OSiC(CH3)3], 46.5, 47.6 (C-6, C-4′), 55.3 (OCH3), 70.4 (C-5), 91.7 (C-4), 101.6 (C-5′/C-7), 125.5 (C-4-Ph), 128.5, 128.6, 129.0, 130.9, 131.0, 132.4, 132.8, 136.1 (CHPh, OSiPh2), 137.8 (C-2,6-Ph), 139.4 (C-1-Ph), 154.3 (C-1), 158.2 (C-3′), 162.2 (C-4a), 173.2 (C-3).
(5,7- cis )-4′,5′,6,7-Tetrahydro-3′-(2,4,6-trimethylphenyl)-3-methoxy-5-benzoyloxyspiro[pyrrolo[1,2- c ]pyrimidine-7(5 H ),5′-izoxazol]-1-one ( 13b): Yield 14%; colorless solid; mp 164-165 °C. 1H NMR (400 MHz, CDCl3): δ = 2.30 (s, 3 H, 4-CH3Ph), 2.43 (s, 6 H, 2,6-CH3Ph), 2.85 (dd, J 5,6a = 7.0 Hz, J 6a,6b = 15.1 Hz, 1 H, H-6a), 2.99 (dd, J 5,6b = 2.3 Hz, J 6a,6b = 15.1 Hz, 1 H, H-6b), 3.23 (d, J 4a ,4b = 18.4 Hz, 1 H, H-4a′), 3.97 (s, 3 H, OCH3), 4,50 (d, J 4a ,4b = 18.4 Hz, 1 H, H-4b′), 6.14 (d, J 4,5 = 0.9 Hz, 1 H, H-4), 6.22 (ddd, J 4,5 = 0.9 Hz, J 5,6a = 7.0 Hz, J 5,6b = 2.3 Hz, 1 H, H-5), 6.92 (s, 2 H, Ph), 7.45-8.11 (m, 5 H, COPh). 13C NMR (125 MHz, CDCl3),
δ = 20.4 (2,6-CH3Ph), 21.5 (4-CH3Ph), 44.5, 46.9 (C-6, C-4′), 55.5 (OCH3), 69.8 (C-5), 94.4 (C-4), 102.9 (C-5′/C-7), 125.4 (C-4-Ph), 129.0, 130.5, 134.3 (CHPh, COPh), 137.9 (C-2,6-Ph), 139.5 (C-1-Ph), 154.2 (C-1), 156.9 (COPh), 158.0 (C-3′), 166.2 (C-4a), 173.3 (C-3).
(5,7- trans )-4′,5′,6,7-Tetrahydro-3′-(2,4,6-trimethyl-phenyl)-3-methoxy-5-benzoyloxyspiro[pyrrolo[1,2- c ]pyrimidine-7(5 H ),5′-izoxazol]-1-one ( 14b): Yield 69%; colorless solid; mp 210-212 °C. 1H NMR (400 MHz, CDCl3): δ = 2.30 (s, 3 H, 4-CH3Ph), 2.42 (s, 6 H, 2,6-CH3Ph), 2.57 (dd, J 5,6a = 7.3 Hz, J 6a,6b = 14.0 Hz, 1 H, H-6a), 3.25 (d, J 4a ,4b = 18.4 Hz, 1 H, H-4a′), 3.34 (dd, J 5,6b = 7.6 Hz, J 6a,6b = 14.0 Hz, 1 H, H-6b), 3.98 (s, 3 H, OCH3), 4.58 (d, J 4a ,4b = 18.1 Hz, 1 H, H-4b′), 6.06 (d, J 4,5 = 1.2 Hz, 1 H, H-4), 6.37 (ddd, J 4,5 = 1.2 Hz, J 5,6a = 7.3 Hz, J 5,6b = 7.6 Hz, 1 H, H-5), 6.92 (s, 2 H, H-Ph), 7.46-7.65 (m, 5 H, COPh). 13C NMR (125 MHz, CDCl3): δ = 20.3 (2,6-CH3Ph), 21.5 (4-CH3Ph), 44.9, 47.0 (C-6, C-4′), 55.5 (OCH3), 70.4 (C-5), 93.1 (C-4), 102.3 (C-5′/C-7), 125.4 (C-4-Ph), 129.0, 129.1, 130.3, 134.5 (CHPh, COPh), 137.9 (C-2,6-Ph), 139.6 (C-1-Ph), 154.2 (C-1), 157.7 (COPh), 158.2 (C-3′), 165.8 (C-4a), 173.2 (C-3).

17

Crystallographic data for the structure 15 and 16 have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (email: deposit@ccdc.cam.ac.uk).