Synlett 2003(9): 1323-1326
DOI: 10.1055/s-2003-40351
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Neomycin Analogs to Investigate Aminoglycoside-RNA Interactions

Peter H. Seeberger*a, Michael Baumanna,, Guangtao Zhanga,, Takuya Kanemitsua, Eric E. Swayzeb, Steven A. Hofstadlerb, Richard H. Griffeyb
a Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139, USA
Fax: +1(617)2537929; e-Mail: seeberg@mit.edu;
b Ibis Therapeutics, 2292 Faraday Avenue, Carlsbad, CA 92008
Further Information

Publication History

Received 28 May 2003
Publication Date:
30 June 2003 (online)

Abstract

A series of novel aminoglycoside oligosaccharide analogs containing a 2,5-dideoxystreptamine core scaffold was prepared to study aminoglycoside binding to the small subunit of 16S rRNA. A set of monosaccharide building blocks carrying amino groups in different positions and conformations around the pyranose ring was utilized in the assembly of oligosaccharides. These aminoglycoside analogs were analyzed for their RNA-binding capacity using a high throughput mass spectroscopy assay.

    References

  • 1a

    Present address: Aventis Pharma Deutschland GmbH, 65926 Frankfurt, Germany

  • 1b

    Present address: Provid Pharmaceuticals, Piscataway, NJ 08854, USA

  • 2 Pearson ND. Prescott CD. Chem. Biol.  1997,  4:  409 
  • 3 Baumann M. Bischoff H. Schmidt D. Griesinger C. J. Med. Chem.  2001,  44:  2172 
  • 4 Michael K. Tor Y. Chem.-Eur. J.  1998,  4:  2091 
  • 5 Stage TK. Hertel KJ. Uhlenbeck OC. RNA  1995,  1:  95 
  • 6 Sears P. Wong C.-H. Angew. Chem. Int. Ed.  1999,  38:  2300 
  • 7 Hendrix M. Priestley ES. Joyce GF. Wong C.-H. J. Am. Chem. Soc.  1997,  119:  3641 
  • 8 Tor Y. Hermann T. Westhof E. Chem. Biol.  1985,  5:  277 
  • 9 Carter AP. Clemons WM. Brodersen DE. Morgan-Warren RJ. Wimberly BT. Ramakrishnan V. Nature  2000,  407:  340 
  • 10 Alper PB. Hendrix M. Sears P. Wong CH. J. Am. Chem. Soc.  1998,  120:  1965 
  • 11 Kavadias G. Velkof S. Belleau B. Can. J. Chem.  1978,  56:  404 
  • 12a Vasella A. Witzig C. Chiara JL. Martin-Lomas M. Helv. Chim. Acta  1991,  74:  2073 
  • 12b Lemieux R. Cushley S. Can. J. Chem.  1963,  43:  858 
  • 12c Baeschlin DK. Chaperon AR. Green LG. Hahn MG. Ince SJ. Ley SV. Chem.-Eur. J.  2000,  6:  172 
  • 12d Contour MO. Deaye J. Little M. Wong E. Carbohydr. Res.  1989,  193:  283 
  • 14 Greenberg WA. Priestley ES. Sears PS. Alper PB. Rodenbohm C. Hendrix M. Hung S.-C. Wong C. J. Am. Chem. Soc.  1999,  121:  6527 
  • 15 Garegg PJ. Adv. Carbohydr. Chem. Biochem.  1997,  52:  179 
  • 17 Deprotection. General procedure. Protected di- or trisaccharide (0.052 mmol) was dried 48 h at high vacuum, dissolved in MeOH (5 mL) and stirred at room temperature with Pd(OH2)/C (60 mg) while bubbling hydrogen through the mixture. After 5 h AcOH (2 mL, 50% aqueous) was added to the solution and the mixture was hydrogenated for an additional 2 h. The catalyst was filtered off and the solvent was removed under reduced pressure. The residue was dissolved in water (5 mL) and freeze dried to afford the deprotected aminoglycoside.
  • 18 Hofstadler SA. Griffey RH. Chem. Rev.  2001,  101:  377 
13

7: Rf = 0.81 (hexanes-EtOAc, 1:1); 1H NMR (300 MHz, CDCl3): δ = 7.40-7.28 (m, 10 H), 5.25 (d, J = 3.0 Hz, 1 H), 4.83 (dd, J = 10.1, 10.1 Hz, 2 H), 4.79 (dd, J = 10.2, 10.2 Hz, 2 H), 4.51 (d, J = 9.4 Hz, 1 H), 4.44 (dd, J = 6.3, 10.2 Hz, 1 H), 4.27 (dd, J = 6.8, 10.4 Hz, 1 H), 3.91 (dd, J = 6.6, 6.6 Hz, 1 H), 3.69 (dd, J = 3.0, 9.3 Hz, 1 H), 3.58 (dd, J = 9.4, 9.4 Hz, 1 H), 3.07 (s, 3 H), 3.03 (s, 3 H), 2.75 (m, 2 H), 1.32 (t, J = 7.4 Hz, 3 H); 13C NMR (75 MHz, CD3Cl): δ = 137.7, 137.0, 128.8, 128.6, 128.5, 128.4, 128.2, 85.9, 80.5, 76.1, 76.0, 74.1, 73.6, 67.1, 39.4, 37.8, 25.5, 15.5; HRMS (FAB+) Calcd for m/z C24H32O9S3Na [(M + Na)+] 583.1106, found 583.1112. 9: Rf = 0.38 (hexanes-EtOAc, 1:1); 1H NMR (300 MHz, CDCl3): δ = 7.41 -7.30 (m, 10 H), 4.90 (dd, J = 11.1, 11.1 Hz, 2 H), 4.57 (dd, J = 11.1,11.1 Hz, 2 H), 4.32 (d, J = 9.5 Hz, 1 H), 3.74 (dd, J = 2.3, 4.5 Hz, 1 H), 3.78-3.65 (m, 2 H), 3.44 (dd, J = 4.7, 9.6 Hz, 1 H), 3.38 (dd, J = 6.7, 6.7 Hz, 1 H), 3.36 (m, 1 H), 2.82 (br s, 1 H), 2.75 (m, 2 H), 1.32 (t, J = 7.4 Hz, 3 H); 13C NMR (75 MHz, CD3Cl): δ = 138.2, 137.8, 128.8, 128.7, 128.4, 128.3, 128.1, 128.0, 84.7, 84.5, 78.0, 75.5, 73.9, 72.6, 70.7, 65.6, 24.9, 15.3; HRMS (FAB+) Calcd for m/z C22H27N3O4SNa [(M + Na)+] 452.1619, found 552.1624. 10: Rf = 0.53 (hexanes-Et2O, 1:2); 1H NMR (300 MHz, CDCl3): δ = 7.40-7.32 (m, 10 H), 4.72 (dd, J = 11.6, 11.6 Hz, 2 H), 4.57 (s, 2 H), 4.24 (d, J = 10.3 Hz, 1 H), 4.08 (d, J = 3.2 Hz, 1 H), 3.77-3.67 (m, 2 H), 3.54 (dd, J 1 = 7.1, 7.1 Hz, 1 H), 3.40 (dd, J = 3.1, 9.4 Hz, 1 H), 2.75 (m, 2 H), 1.31 (t, J = 7.2 Hz, 3 H); 13C NMR (75 MHz, CD3Cl): δ =138.0, 137.2, 128.8, 128.7, 128.5, 128.3, 128.1, 128.0, 84.2, 81.3, 77.2, 73.9, 72.1, 69.4, 65.8, 62.1, 24.6, 15.2; HRMS (FAB+) Calcd for m/z C22H27N3O4SNa [(M + Na)+] 452.1619, found 552.1634.

16

Glycosylation. General procedure. Thioethyl glycoside (0.1 mmol) and acceptor 2 (0.1 mmol) were coevaporated with toluene and dried under vacuum. Et2O (1.5 mL), CH2Cl2 (0.5 mL), toluene (0.2 mL), and 4 Å MS (40 mg) were added and the mixture was cooled to -40 °C. Addition of NIS (0.071 mmol) and AgOTf (0.020 mmol) followed. The mixture was stirred for 5 h at -40 °C, EtOAc (20 mL) was added and the filtrate was washed with Na2S2O3 (5% aqueous, 5 mL) and dried over MgSO4. After removal of the solvents, the residue was purified by silica gel column chromatography to afford the disaccharides as two diastereomers.