References
<A NAME="RS05403ST-1A">1a</A>
Pugliese A.
Torre D.
Baccino FM.
Di Perri G.
Cantamessa C.
Gerbaudo L.
Saini A.
Vidotto V.
Cell Biochem.
Funct.
2000,
18:
235
<A NAME="RS05403ST-1B">1b</A>
Bektic J.
Lell CP.
Fuchs A.
Stoiber H.
Speth C.
Lass-Florl C.
Zepelin MB.
Dierich MP.
Wurzner R.
FEMS
Immunol. Med. Microbiol.
2001,
31:
65
<A NAME="RS05403ST-1C">1c</A>
Cassone A.
Cauda R.
Trends Microbiol.
2002,
10:
177
<A NAME="RS05403ST-2">2</A>
Calderone RA.
Fonzi WA.
Trends Microbiol.
2001,
9:
327
<A NAME="RS05403ST-3">3</A>
Shibata N.
Ichikawa T.
Tojo M.
Takahashi M.
Ito N.
Ohkubo Y.
Suzuki S.
Arch.
Biochem. Biophys.
1985,
243:
338
<A NAME="RS05403ST-4">4</A>
Rees DA.
Scott WE.
J. Chem. Soc.
1971,
469:
1971
<A NAME="RS05403ST-5A">5a</A>
Nobuyuki S.
Hisamichi K.
Kikuchi T.
Kobayashi H.
Ikawa Y.
Suzuki S.
Biochemistry
1992,
31:
5680
<A NAME="RS05403ST-5B">5b</A>
Shibata N.
Hisamichi K.
Kobayashi H.
Suzuki S.
Arch. Biochem. Biophys.
1993,
302:
113
<A NAME="RS05403ST-5C">5c</A>
Cipollo JF.
Trimble RB.
Rance M.
Cavanagh J.
Anal. Biochem.
2002,
278:
52
<A NAME="RS05403ST-6">6</A>
Jouault T.
Lepage G.
Bernigaud A.
Trinel PA.
Fradin C.
Wieruszeski JM.
Strecker G.
Poulain D.
Infect. Immun.
1995,
63:
2378
<A NAME="RS05403ST-7A">7a</A>
Nitz M.
Chang-Chun L.
Otter A.
Cutler JE.
Bundle DR.
J. Biol. Chem.
2002,
277:
3440
<A NAME="RS05403ST-7B">7b</A>
Mitz M.
Bundle DR.
J. Org. Chem.
2001,
66:
8411
<A NAME="RS05403ST-8A">8a</A>
Mootoo DR.
Konradsson P.
Fraser-Reid B.
J. Am. Chem. Soc.
1985,
111:
8540
<A NAME="RS05403ST-8B">8b</A>
Roberts C.
Madsen R.
Fraser-Reid B.
J.
Am. Chem. Soc.
1995,
117:
1546
<A NAME="RS05403ST-8C">8c</A>
Madsen R.
Udodong UE.
Roberts C.
Mootoo DR.
Konradsson P.
Fraser-Reid B.
J. Am. Chem. Soc.
1995,
117:
1554
<A NAME="RS05403ST-8D">8d</A>
Campbell AS.
Fraser-Reid B.
J. Am. Chem.
Soc.
1995,
117:
10387
<A NAME="RS05403ST-8E">8e</A>
Arasappan A.
Fraser-Reid B.
J. Org. Chem.
1996,
61:
2401
<A NAME="RS05403ST-9">9</A>
Trinel P.-A.
Plancke Y.
Gerold P.
Jouault T.
Delplace F.
Schwarz RT.
Streckers G.
Poulain D.
J. Biol. Chem.
1999,
274:
30520
<A NAME="RS05403ST-10">10</A>
Mach M.
Schlueter U.
Mathew F.
Fraser-Reid B.
Hazen KC.
Tetrahedron
2002,
58:
7345
<A NAME="RS05403ST-11">11</A>
Kochetkov NK.
Khorlin AY.
Boschkov AF.
Tetrahedron
1967,
23:
693
<A NAME="RS05403ST-12">12</A>
Wilson BG.
Fraser-Reid B.
J. Org. Chem.
1995,
60:
317
<A NAME="RS05403ST-13">13</A>
Paulsen H.
Angew.
Chem. Int. Ed. Engl.
1982,
21:
155 ; Angew Chem., 1982, 94, 184
<A NAME="RS05403ST-14">14</A>
Fradin C.
Jovanlt T.
Mallet A.
Mallet JM.
Camas D.
Sinay P.
Poulain DJ.
J.
Leukocyte Biol.
1996,
60:
81
<A NAME="RS05403ST-15">15</A>
Boren HB.
Ekborg G.
Iklind K.
Garegg PJ.
Pilotti A.
Swan CG.
Acta Chem. Scand.
1973,
27:
2639
<A NAME="RS05403ST-16A">16a</A>
Crich D.
Sun S.
J.
Am. Chem. Soc.
1997,
119:
11217
<A NAME="RS05403ST-16B">16b</A>
Crich D.
Li H.
Yao Q.
Wink DJ.
Sommer RD.
Rheingold AL.
J. Am. Chem. Soc.
2001,
123:
5826
<A NAME="RS05403ST-17">17</A>
Jayaprakash KN.
Radhakrishnan KV.
Schlueter U.
Fraser-Reid B.
Tetrahedron
Lett.
2002,
43:
6953
<A NAME="RS05403ST-18">18</A>
Wang Z.-G.
Zhang X.
Visser M.
Live D.
Zatorsky AM.
Iserloh U.
Lloyd KO.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2001,
40:
1728
<A NAME="RS05403ST-19">19</A>
Typical procedure for preparation
of 9 by reaction of 15a with 1: The acceptor, trisaccharide 15a (n = 1, 1.40 g, 1 mmol) and
the donor (1, 4.36 g, 7 mmol) were separately rotovaporised
twice with dry toluene, and then dried for 8 h under vacuum (0.5
mm Hg). To a solution of the acceptor in 15 mL of dry CH2Cl2 were
added freshly activated molecular sieves (4 g, 3 A beads, 8-12
mesh), NIS re-crystallized from hot CH2Cl2 and
cold hexane and dried under vacuum (0.5 mm Hg, over night, 1.35
g, 6 mmol) followed by TBDMSOTf (0.1 mL, 0.4 mmol) at 10 ºC
(ice bath). To this solution was added a solution of NPOE in CH2Cl2 drop-wise over
10 min, and then the ice bath was removed. After 10 min TLC (7:3,
hexane-ethyl acetate) showed that all of the acceptor had
been consumed. The mixture was diluted with CH2Cl2 (200
mL), and washed with 10% aqueous Na2S2O3, saturated
aqueous NaHCO3 and brine. The dried (Na2SO4) material
was concentrated and flash chromatography (7:1& ndash;4:1,
hexane-ethyl acetate) afforded 1.78 g (92%) of 9 (n = 2). Rf = 0.5
(7:3 hexane-ethyl acetate).
<A NAME="RS05403ST-20">20</A>
Mancuso AJ.
Huang SL.
Swern D.
J.
Org. Chem.
1978,
43:
2480
<A NAME="RS05403ST-21">21</A>
Nitz M.
Purse BW.
Bundle DR.
Org. Lett.
2000,
2:
2939
<A NAME="RS05403ST-22">22</A>
For 15a n = 6: 1H
NMR (300 MHz, CDCl3): δ = 7.45-6.77 (m,
125 H), 5.56-5.52 (broad 6 H), 5.19 (s, 1 H), 4.98 (s,
1 H), 4.91-4.22 (m, 51 H), 4.12-3.56 (m, 49 H). 13C
NMR (300 MHz, CDCl3): δ = 139.4, 139.2,
139.1, 139.0, 138.9, 138.6, 138.4, 138.3, 138.1, 138.0, 137.9, 137.0,
128.7, 128.7, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.9, 127.8,
127.8, 127.7, 127.6, 127.5, 127.1, 127.1, [8 anomeric carbons
comes at (100.9, 100.8, 100.5, 100.3, 100.1, 99.9, 98.7, 95.7 (α anomeric
carbon)]. 83.3, 82.0, 81.9, 81.8, 81.7, 79.8, 78.1, 75.7,
75.5, 75.3, 75.1, 74.9, 74.7, 74.4, 74.1, 74.0, 73.6, 73.5, 73.2,
73.1, 73.0, 72.8, 72.7, 71.3, 70.3, 70.2, 70.1, 70.0, 69.9, 69.7,
69.6, 69.5, 69.4, 68.5, 67.6. FAB-MS (m/z) 3696
(M + Cs).