Synlett 2003(8): 1155-1159
DOI: 10.1055/s-2003-39899
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Formation of 1-Ethenylcyclopropanols Involving Kulinkovich Cyclo­propanation and Peterson Olefination of α-Trimethylsilylesters

Damien Hazelard, Jean Ollivier, Renée Paugam, Jacques Salaün*
Laboratoire des Carbocycles, UMR 8615, Institut de Chimie Moléculaire et des Matériaux d’Orsay, Université de Paris-Sud, 91405 Orsay, France
Fax: +33(1)69156278; e-Mail: jasalaun@icmo.u-psud.fr;
Further Information

Publication History

Received 26 April 2003
Publication Date:
11 June 2003 (online)

Abstract

Mercuric iodide catalyzed condensation of bis-silyl­ketene acetals with benzaldehyde provided a 1:1 erythro and threo mixture of α-trimethylsilylesters. Only the threo adducts underwent titanium(IV)-mediated cyclopropanation and acid induced Peterson olefination to provide (Z)-1-ethenylcyclopropanols of considerable synthetic potential.

    References

  • 1a Salaün J. In The Chemistry of the Cyclopropyl Group, Rearrangements Involving the Cyclopropyl Group   Rappoport Z. Wiley; New York: 1987.  p.809-878  
  • 1b Salaün J. Top. Curr. Chem.  1988,  144:  1 ; and references cited therein
  • 1c Carbocyclic Three- and Four-membered Ring systems In, Houben-Weyl Methods of Organic Chemistry   Vol. E 17a-f:  de Meijere A. Thieme; Stuttgart: 1997. and references cited therein
  • 2a Schnaubelt J. Ullmann A. Reissig H.-U. Synlett  1995,  1223 
  • 2b Ulmann A. Reissig H.-U. Rademacher O. Eur. J. Org. Chem.  1998,  2541 
  • 2c Palia PK. Reissig H.-U. Synlett  2001,  33 
  • 3a Stolle A. Ollivier J. Piras PP. Salaün J. de Meijere A. J. Am. Chem. Soc.  1992,  114:  4051 
  • 3b Ollivier J. Dorizon P. Piras PP. de Meijere A. Salaün J. Inorg. Chim. Acta  1994,  222:  37 
  • 3c Salaün J. Russian J. Org. Chem.  1997,  33:  742 
  • 4a Ollivier J. Girard N. Salaün J. Synlett  1999,  1539 
  • 4b Paschetta V. Cordero FM. Paugam R. Ollivier J. Salaün J. Synlett  2001,  1233 
  • 5a Chevtchouk T. Ollivier J. Salaün J. Tetrahedron: Asymmetry  1997,  8:  1005 
  • 5b Chevtchouk T. Ollivier J. Salaün J. Tetrahedron : Asymmetry  1997,  8:  1011 
  • 5c Stolle A. Becker H. Salaün J. de Meijere A. Tetrahedron Lett.  1994,  35:  3517 
  • 5d Stolle A. Becker H. Salaün J. de Meijere A. Tetrahedron Lett.  1994,  35:  3521 
  • 5e Atlan V. Racouchot S. Rubin M. Bremer C. Ollivier J. de Meijere A. Salaün J. Tetrahedron: Asymmetry  1998,  9:  1131 
  • 5f Estieu K. Paugam R. Ollivier J. Salaün J. Cordero FM. Goti A. Brandi A. J. Org. Chem.  1997,  62:  8276 
  • 5g Ferrara M. Cordero FM. Goti A. Brandi A. Estieu K. Paugam R. Ollivier J. Salaün J. Eur. J. Org. Chem.  1999,  2725 
  • 5h Pisaneschi F. Cordero FM. Goti A. Paugam R. Ollivier J. Brandi A. Salaün J. Tetrahedron: Asymmetry  2000,  11:  897 
  • 5i Cordero FM. Pisaneschi F. Goti A. Ollivier J. Salaün J. Brandi A. J. Am. Chem. Soc.  2000,  122:  8075 
  • 5j Delogu G. Salaün J. de Candia C. Fabbri D. Piras PP. Ollivier J. Synthesis  2002,  2271 
  • 6 Salaün J. Conia JM. Tetrahedron Lett.  1972,  2849 
  • 7 Denis JM. Girard C. Conia JM. Synthesis  1972,  549 
  • 8 Salaün J. Chem. Rev.  1983,  83:  619 
  • 9 Salaün J. Chem. Rev.  1989,  89:  1247 
  • 10a Kulinkovich OG. Sviridov SV. Vasilevskii DA. Pritcyckaja JS. Zh. Org. Khim.  1989,  25:  2245 
  • 10b Kulinkovich OG. Sviridov SV. Vasilevskii DA. Synthesis  1991,  234 
  • 10c Kulinkovich OG. Sviridov SV. Vasilevskii DA. Savchenko AI. Pritytskaya TS. Zh. Org. Khim.  1991,  27:  294 
  • 10d Kulinkovich OG. de Meijere A. Chem. Rev.  2000,  100:  2789 ; and references cited therein
  • 10e Kulinkovich OG. Pure Appl. Chem.  2000,  72:  1715 ; and references cited therein
  • 11 Kozyrkov Y. Pukin A. Kulinkovich OG. Ollivier J. Salaün J. Tetrahedron Lett.  2000,  41:  6399 
  • 12 Sylvestre I. Ollivier J. Salaün J. Tetrahedron Lett.  2001,  42:  4991 
  • 13a Racouchot S. Ollivier J. Salaün J. Synlett  2000,  1729 
  • 13b Racouchot S. Sylvestre I. Ollivier J. Kozyrkov Y.-Y. Pukin A. Kulinkovich OG. Salaün J. Eur. J. Org. Chem.  2002,  2160 
  • 14 Chan TH. Acc. Chem. Res.  1977,  10:  442 
  • 15 Brandi A. Goti A. Chem. Rev.  1998,  98:  589 
  • 16 Fleming I. Dunoges J. Smithers R. Org. React.  1989,  37:  57 
  • 17 The cyclopropanol 2a (R1 = H) was previously isolated as 3,5-dinitrobenzoate from the alkylation-cyclization of ethyl 3-bromopropionate by Me3SiCH2MgBr/SmI2, see: Fukuzawa S. Furuya H. Tsuchimoto T. Tetrahedron  1996,  52:  1953 
  • 18a Dicker IB. J. Org. Chem.  1993,  51:  2324 
  • 18b In this article (ref.) the J(threo) > J(erythro) relationship for the H2H3 coupling constants, was erroneously based on the consideration of stronger intramolecular hydrogen bonds in the threo comparatively to the erythro adducts, see: House HO. Crumrine DS. Teranishi AY. Olmstead HD. J. Am. Chem. Soc.  1973,  95:  3310 
  • 18c

    However, there are no intramolecular hydrogen bond in the O-silylated diastereoisomers 6a,b and 7a,b. The coupling constants of erythro- 6a [J(H2H3) = 10.7 Hz] and of threo -7a [J(H2H3) = 10.4 Hz] were carefully measured by peak pickings.

  • 19 Colvin EW. In Silicon Reagents in Organic Synthesis   Academic Press; London/New York: 1988.  p.101 
  • To a solution of 4 g (11 mmol) of the 1:1 mixture of ethyl 3-phenyl-2-(trimethylsilyl)-3-(trimethylsilyloxy)propionate erythro -6a and threo- 7a in 15 mL of THF containing 0.62 g (2.2 mmol; 0.2 equiv) of Ti(i-PrO)4 was added dropwise a 2.54 M solution of ethylmagnesium bromide (11 mL, 27 mmmol; 2.5 equiv) in diethyl ether within 4 h. The reacting mixture was cooled to 0 °C (iced-water bath), then diluted with diethyl ether and hydrolyzed with 10 mL of aq NH4Cl. After filtration through celite, the separated organic layer was washed with brine, dried on Na2SO4 and concentrated in vacuo. Flash chromatography of the residue (eluant: pentane/diethyl ether 9:1) gave two products:
  • 20a

    1-[2-Phenyl-1-(trimethylsilyl)-2-(trimethylsilyl-oxy)ethyl]cyclopropanol 9a: 1.94 g (52% yield); 1H NMR (250 MHz, CDCl3) δ -0.08 (s, 9 H), 0.71 (d, J = 4.95 Hz, 1 H), 0.25-0.88 (m, 4 H), 3.24 (s, 1 H), 5.33 (d, J = 4.95 Hz, 1 H), 7.19-7.33 (m, 5 H); 13C NMR (66 MHz, CDCl3): δ 0.21, 0.28, 13.27, 15.62, 46.13, 58.92, 78.75, 126, 126.9, 127.9, 144.4; IR 3463, 3379, 2974, 2949 cm-1; MS m/z (EI) 322 (2) [M+], 231 (42), 179 (31), 147 (17), 75 (36), 73 (100), 45 (16); MS m/z (CI with NH3) 340 (0.1), 252 (17), 251 (61), 250 (100), 233 (40), 232 (44), 231 (74) 217 (18), 179 (21), 160 (21), 155 (15), 144 (26), 1433 (100).

  • 20b

    1-(2-Hydroxy-2-phenyl-1-trimethylsilylethyl)cyclo-propanol 9a′: (various amounts 5-10%); white solid: mp 107 °C; 1H NMR (250 MHz, CDCl3) δ -0.07 (s, 9 H), 0.76 (s, 1 H), 0.07-0.97 (m, 4 H), 2.58 (s, 1 H), 3.29 (s, 1 H), 5.44 (s, 1 H), 7.24-7.35 (m, 5 H); 13C NMR (66 MHz, CDCl3) δ 0.32, 13.41, 16.02, 44.86, 59.97, 77.97, 125.17, 126.91, 128.09, 144.41; IR: 3468, 2955, 2898 cm-1; MS m/z (EI) 231 (33), 159 (33), 145 (16), 131 (33), 115 (12), 103 (16), 79 (27), 77 (44), 75 (93), 73 (100), 79 (27), 45 (26); MS m/z (CI with NH3) 251 (19), 250 (81) [M+], 231 (10), 161 (16), 160 (13), 144 (13), 143 (100) 131 (8); Exact mass M+ 250.1377 (calcd for C14H22SiO2 250.1389).

  • 23 Salaün J. Ollivier J. Nouv. J. Chem.  1981,  5:  587 
  • 24 Ollivier J. PhD Thesis   Université de Paris-Sud; Orsay France: 1986. 
  • 25 Colvin EW. In Silicon Reagents in Organic Synthesis   Academic Press; New York: 1988.  p.65-69  
  • 27 Molecular mechanics calculations (using a MM+ force field) and semi-empirical ZINDO calculations have been performed with the Hyperchem software (version 5.1). The Ti-O and Ti-C bond lengths and the Ti-bond angles were in accord with reported RX data for titanium complexes. See: Gais HJ. Volhardt J. Linder HJ. Paulus H. Angew. Chem., Int. Ed. Engl.  1988,  27:  1541 
21

Base-induced Peterson olefination of cyclopropanols 9a and 11a led to ring-opened derivatives (see ref. 1).

22

To a stirred solution of 340 mg (1 mmol) of cyclopropanol 9a in 5 mL of methanol at r.t. was added two drops of chlorotrimethylsilane. The reaction was complete within 2 h, as monitored by TLC. Then the solvent was removed in vacuo; flash chromatography of the residue (eluant: pentane/diethyl ether 9:1) gave 128 mg (76% yield) of 1-(Z)-styryl cyclopropanol 12. 1H NMR (250 MHz, CDCl3) δ 0.71-1.32 (m, 4 H), 2.16 (s, 1 H), 5.26 (d, J = 13 Hz, 1 H), 6.53 (d, J = 13 Hz, 1 H), 7.32-7.55 (m, 5 H); MS m/z (EI) 160 (41) [M+], 159 (74), 145 (54), 131 (68), 127 (36), 115 (43), 103 (63), 91 (33), 77 (100), 51 (52); MS m/z (CI with NH3) 178 (100), 161 (22), 160 (17), 159 (14), 143 (18), 131 (13).

26

X-ray crystallographic data of the diol 9a′, will be published in Zeitschrift fuer Kristallographie.