Synlett 2003(7): 0955-0958
DOI: 10.1055/s-2003-39296
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Stereoselective Preparation of Homo- and Hetero-1,1-Dihalo-1-alkenes

Patrick Le Méneza, Jean-Daniel Brion*a, Jean-François Betzerb, Ange Pancrazib, Janick Ardisson*b
a CNRS-BIOCIS, Faculté de Pharmacie, Université de Châtenay-Malabry, 92296 Châtenay-Malabry, France
Fax: +33(146)835398;
b ‘Laboratoire de Synthèse Organique Sélective et Chimie Organométallique’, CNRS-UCP-ESCOM, UMR 8123, 13 Bd de l’Hautil, 95092 Cergy-Pontoise Cedex, France
Fax: +33(130)756015; e-Mail: janick.ardisson@chim.u-cergy.fr;
Further Information

Publication History

Received 20 March 2003
Publication Date:
20 May 2003 (online)

Abstract

Metallate rearrangements performed on 5-lithio-2,3-dihydrofuran 1 gave access to several homo- and hetero-1,1-bimetallated (or pseudo) alkenes 3 upon exposure to a cyanocuprate and quench with an electrophilic reagent Ε X. After metal/halogen exchange, several homo- or hetero-1,1-dihalo-1-alkenes were prepared stereospecifically and in good yields.

    References

  • 1 The Chemistry of Dienes and Polyenes   Rappoport Z. John Wiley & Sons; New York: 1997. 
  • 2a Mitchell TN. Amamria A. J. Orgmet. Chem.  1983,  253:  47 
  • 2b Mitchell TN. Reimann W. J. Orgmet. Chem.  1985,  281:  163 
  • 2c Mitchell TN. Reimann W. Organometallics  1986,  5:  1991 
  • 2d Mitchell TN. Reimann W. J. Orgmet. Chem.  1987,  322:  141 Mitchell T. N., Schütze M., Giebelmann F.; Synlett; 1997, 183
  • 2e Quayle P. Wang J. Xu J. Urch CJ. Tetrahedron Lett.  1998,  39:  479 
  • 2f Imanieh H. MacLeod D. Zao Y. Davies GM. Tetrahedron Lett.  1992,  33:  405 
  • 2g Lautens M. Huboux AH. Tetrahedron Lett.  1990,  31:  3105 
  • 2h Lautens M. Delanghe PHM. Goh JB. Zhang CH. J. Org. Chem.  1992,  57:  3270 
  • 2i Lautens M. Zhang CH. Goh JB. Crudden CM. Johnson MJA. J. Org. Chem.  1994,  59:  6208 
  • 2j Lautens M. Delanghe PHM. Goh JB. Zhang CH. J. Org. Chem.  1995,  60:  4213 
  • 2k Lautens M. Ben RN. Delanghe PHM. Tetrahedron  1996,  52:  7221 
  • 2l Rossi R. Carpita A. Messeri T. Synth. Commun.  1992,  22:  603 
  • 2m Tweddell J. Hoic DA. Fu GC. J. Org. Chem.  1997,  62:  8286 
  • For allylic and aliphatic 1,1-bimetallated species see also:
  • 3a Leusink AJ. Noltes JG. J. Orgmet. Chem.  1969,  16:  91 
  • 3b Isono N. Mori M. Tetrahedron Lett.  1997,  36:  9345 
  • 3c Isono N. Mori M. J. Org. Chem.  1996,  61:  7867 
  • 3d Wahamatsu H. Isono N. Mori M. J. Org. Chem.  1997,  62:  8917 
  • 3e Madec D. Férézou J.-P. Tetrahedron Lett.  1997,  38:  6657 
  • 3f Grimaud L. Férézou J.-P. Prunet J. Lallemand J.-Y. Tetrahedron  1997,  53:  9253 
  • 3g Dabdoub MJ. Dabdoub VB. Baroni ACM. J. Am. Chem. Soc.  2001,  123:  9694 
  • 3h For a review see: Marek I. Normant J.-F. Chem. Rev.  1996,  96:  3241 
  • 4a Corey EJ. Fuchs PL. Tetrahedron Lett.  1972,  3769 
  • 4b Ramirez F. Desai NB. McKelvie N. J. Am. Chem. Soc.  1962,  84:  1745 
  • 4c Uenishi J. Kawahama R. Yonemitsu O. Tsuji J. J. Org. Chem.  1996,  61:  5716 
  • 4d Uenishi J. Kawahama R. Yonemitsu O. Tsuji J. J. Org. Chem.  1998,  63:  8965 
  • 4e Uenishi J. Kawahama R. Shiga Y. Yonemitsu O. Tsuji J. Tetrahedron Lett.  1996,  37:  6759 
  • 4f Shen W. Wang L. J. Org. Chem.  1999,  64:  8873 
  • 4g Grandjean D. Pale P. Tetrahedron Lett.  1993,  34:  1155 
  • 4h Harada T. Katsuhira T. Oku A. J. Org. Chem.  1992,  57:  5805 
  • 4i Braun M. Rahematpura J. Bühne C. Paulitz TC. Synlett  2000,  1070 
  • 4j For α-heteroatom-substituted 1-alkenyllithium reagents see: Braun M. Angew. Chem. Int. Ed.  1998,  37:  430 
  • 5a Kocienski P. Barber C. Pure Appl. Chem.  1990,  62:  1933 
  • 5b Takle A. Kocienski P. Tetrahedron  1990,  46:  4503 
  • 5c Kocienski P. Dixon NJ. Synlett  1989,  52 
  • 5d Pimm A. Kocienski P. Street SDA. Synlett  1992,  886 
  • 5e For a recent review see: Boche G. Lohrenz JCW. Chem. Rev.  2001,  101:  697 
  • 6a Fargeas V. Le Ménez P. Berque I. Ardisson J. Pancrazi A. Tetrahedron  1996,  52:  6613 
  • 6b Le Ménez P., Fargeas V., Poisson J., Ardisson J., Lallemand J.-Y., Pancrazi A.; Terahedron Lett.; 1994, 35: 7767
  • 6c Le Ménez P. Firmo N. Fargeas V. Ardisson J. Pancrazi A. Synlett  1994,  995 
  • 6d Le Ménez P. Berque I. Fargeas V. Ardisson J. Pancrazi A. Synlett  1994,  998 
  • 6e Le Ménez P. Berque I. Fargeas V. Ardisson J. Lallemand J.-Y. Pancrazi A. J. Org. Chem.  1995,  60:  3592 
  • 8 Chen S.-ML. Schaub RE. Grudzinskas CV. J. Org. Chem.  1978,  43:  3450 
  • 9 Quayle P. Wang J. Xu J. Urch CJ. Tetrahedron Lett.  1998,  39:  481 
  • 11 To a solution of the vinyltin derivative Z -7 in CH2Cl2 (or CH3CN) at 0 °C (or below) was slowly added a CH2Cl2 solution of iodine (1.05 equiv) until persistence of an orange-red color (1 h at 0 °C). The solution was then washed with an aqueous KF and a saturated aqueous Na2SO3 solution before evaporation of the solvent and chromato-graphy on silica gel. Compound Z -8 was obtained in 91% yield. 1H NMR (200 MHz, CDCl3) δ 0.18 (s, 9 H), 2.45 (q, J = 6.5 Hz, 2 H), 2.5 (s, 1 H), 3.72 (t, J = 6.5 Hz, 2 H), 6.57 (t, J = 6.5 Hz, 1 H). 13C NMR (50 MHz, CDCl3) δ 1.5 (3 CH3), 42.1 (CH2), 60.6 (CH2), 116.0 (C), 143.5 (CH). MS (CI, CH4): m/z 181, 143, 103, 91, 73. Anal. calcd for C7H15IOSi: C, 31.12; H, 5.60; I, 46.97; O, 5.92; Si, 10.40; Found: C, 31.32; H, 5.48.
  • 12 Lautens M. Huboux AH. Tetrahedron Lett.  1990,  31:  3105 
  • (Me3Si)2CuCNLi2 was prepared by reaction of 2 equivalents of MeLi with 2.2 equivalents of (Me3Si)2 in THF/HMPA (5 mL:1 mL), and 1 equivalent of CuCN at 0 °C. For preparation of Me3SiLi see:
  • 15a Lipshutz BH. Sharma S. Reuter DC. Tetrahedron Lett.  1990,  31:  7253 
  • 15b Still WC. J. Org. Chem.  1976,  41:  3063 
7

Le Ménez, P.; Brion, J.-D.; Lensen, N.; Chelain, E.; Pancrazi, A.; Ardisson, J. results to be published.

10

Preparation of Z -7: A solution of the 5-lithio-2,3-dihydro-furan derivative 1 (2.5 mmol) [9] in THF (4 mL) was added, via cannula, to the solution of the bis-(trimethylsilyl) dilithio-cyanocuprate [15] at -30 °C (2.75 mmol, 1.1 equiv) in THF-Et2O (6 mL/12 mL). The mixture was stirred at -5 °C to 0 °C for 1.5 h. The mixture was then cooled at -40 °C and Bu3SnCl (4 equiv) was added. The temperature was allowed to rise to 0 °C over 1 h, stirring was maintained for 4 h, while the temperature rose to 20 °C. The reaction mixture was poured into a solution of saturated aqueous NH4Cl/concentrated ammonia (4:1) at 0 °C and stirred for 30 min before extraction with diethyl ether. After purification by chromatography on silica gel compound Z -7 was obtained in 86% yield. IR (Neat): 3298, 2954, 2923, 2871, 1571, 1463, 1244, 1180, 1046, 960, 871, 830, 743, 685, 620, 591 cm-1. 1H NMR (200 MHz, CDCl3) δ 0.0 (s, 9 H), 0.88 (m, 15 H), 1.32 (m, 6 H + OH), 1.45 (m, 6 H), 2.45 (q, J = 6.5 Hz, 2 H), 3.69 (t, J = 6.5 Hz, 2 H), 6.72 (t, J = 6.5 Hz, 1 H, J H- 119 Sn = J H- 117 Sn = 170.0 Hz). 13C NMR (50 MHz, CDCl3) δ -0.3 (3 CH3), 11.3 (3 CH2, J C- 119 Sn = 318.0 Hz, J C- 117 Sn = 304.0 Hz), 13.6 (3 CH3), 27.4 (3 CH2, J C- 119 Sn = J C- 117 Sn = 58.0 Hz), 29.2 (3 CH2, J C- 119 Sn = J C- 117 Sn = 19.0 Hz), 42.4 (CH2, J C- 119 Sn = J C- 117 Sn = 57.5 Hz), 62.1 (CH2), 147.6 (C), 150.7 (CH, J C- 119 Sn = J C- 117 Sn = 20.0 Hz). MS (CI, CH4): for major 120Sn isotope, m/z 377, 311, 308, 306, 304, 252, 250, 248, 102.

13

Preparation of Z -9, E -10 and E -11 derivatives:
A solution of the 5-lithio-2,3-dihydrofuran derivative 1 (2.5 mmol) in THF (4 mL) was added, via cannula, to the solution of the bis-[(tributyl)stannyl] dilithiocyanocuprate [9] at -30 °C (2.75 mmol, 1.1 equiv) in THF-Et2O (6 mL/12 mL). The mixture was stirred at -5°C to 0 °C for 1.5 h 30. The mixture was then cooled at -40 °C and a THF solution (1-2 mL) of the quenching agent, NIS, NBS or NCS (4.0 equiv), was added. The temperature was allowed to rise to 0 °C for 1 h, stirring was maintained for 4 h, with temperature going up to 20 °C. The reaction mixture was poured into a solution of saturated aqueous NH4Cl/concentrated ammonia (4:1) at 0 °C and stirred for 30 min before extraction with diethyl ether. The Z -9 compound was obtained in 75% yield. IR (Neat): 3324, 2950, 2920, 2870, 2850, 1594, 1461, 1376, 1180, 1044, 907, 733, 690, 664, 597 cm-1. 1H NMR (200 MHz, CDCl3) δ 0.85 (t, J = 8.0 Hz, 6 H), 0.96 (t, J = 8.0 Hz, 9 H), 1.30 (m, 6 H), 1.48 (m, 1 H, OH), 2.45 (q, J = 6.5 Hz, 2 H), 3.69 (t, J = 6.5 Hz, 2 H), 6.14 (t, J = 6.5 Hz, 1 H, J H- 119 Sn = J H- 117 Sn = 42.0 Hz). 13C NMR (50 MHz, CDCl3) δ 11.1 (3 CH2, J C- 119 Sn = 348.0 Hz, J C- 117 Sn = 332.0 Hz), 13.6 (3 CH3), 27.2 (3 CH2, J C- 119 Sn = J C- 117 Sn = 60.0 Hz), 28.6 (3 CH2, J C- 119 Sn = J C- 117 Sn = 20.0 Hz), 42.6 (CH2, J C- 119 Sn = J C- 117 Sn = 32.0 Hz), 60.9 (CH2), 110.0 (C), 145.2 (CH, J C- 119 Sn = J C- 117 Sn = 20.0 Hz). MS (CI, CH4): for major 120Sn isotope, m/z 377, 322, 307, 252. Anal. calcd for C16H33IOSn: C, 39.46; H, 6.83; I, 26.06; O, 3.29; Sn 24.37; Found: C, 39.88; H, 7.09.

14

Selected NMR spectroscopic data
Z -12: 1H NMR (200 MHz, CDCl3) δ 2.22 (q, J = 6.5 Hz, 2 H), 3.63 (t, J = 6.5 Hz, 2 H), 6.51 (t, J = 6.5 Hz, 1 H). 13C NMR (50 MHz, CDCl3) δ 40.4 (CH2), 55.5 (C), 59.9 (CH2), 143.5 (CH). E -13: 1H NMR (200 MHz, CDCl3) δ 2.37 (q, J = 7.0 Hz, 2 H), 3.72 (t, J = 7.0 Hz, 2 H), 6.90 (t, J = 7.0 Hz, 1 H). 13C NMR (50 MHz, CDCl3) δ 37.8 (CH2), 51.0 (C), 60.3 (CH2), 143.7 (CH).
14 : 1H NMR (200 MHz, CDCl3) δ 1.8 (s, 1 H), 2.44 (q, J = 6.5 Hz, 2 H), 3.76 (t, J = 6.5 Hz, 2 H), 6.48 (t, J = 6.5 Hz, 1 H). 13C NMR (50 MHz, CDCl3) δ 36.2 (CH2), 60.3 (CH2), 90.5 (C), 135.1 (CH).
E -15: 1H NMR (200 MHz, CDCl3) δ 2.43 (q, J = 7.0 Hz, 2 H), 3.69 (t, J = 7.0 Hz, 2 H), 6.51 (t, J = 7.0 Hz, 1 H). 13C NMR (50 MHz, CDCl3) δ 34.9 (CH2), 60.5 (CH2), 68.5 (C), 140.3 (CH).
Z -16: 1H NMR (200 MHz, CDCl3) δ 2.34 (q, J = 7.0 Hz, 2 H), 3.73 (t, J = 7.0 Hz, 2 H), 6.18 (t, J = 7.0 Hz, 1 H). 13C NMR (50 MHz, CDCl3) δ 39.2 (CH2), 60.4 (CH2), 75.7 (C), 137.3 (CH).