Subscribe to RSS
DOI: 10.1055/s-2003-38737
Straightforward Synthesis of a Novel Class of Rigid Bicyclic Dipeptidomimetics from Simple Dipeptides: Fused Imidazole Amino Acids
Publication History
Publication Date:
17 April 2003 (online)

Abstract
A novel class of rigid bicyclic dipeptidomimetics consisting of fused imidazole amino acids is presented. Their straightforward synthesis was realized by using simple dipeptides consisting of a diamino acid and threonine as starting material.
Key words
amino acids - condensation - cyclizations - heterocycles - peptides
- 1a 
             
            Müller G. Angew. Chem., Int. Ed. Engl. 1996, 35: 2767
- 1b 
             
            Stanfield RL.Fieser TM.Lerner RA.Wilson IA. Science 1990, 248: 712
- 1c 
             
            Wilmot CM.Thorton JM. J. Mol. Biol. 1988, 203: 221
- 1d 
             
            Rose GD.Gierasch LM.Smith JA. Adv. Prot. Chem. 1985, 37: 1
- 1e 
             
            Richardson JS. Adv. Prot. Chem. 1981, 34: 167
- 1f 
             
            Smith JA.Pease LG. Rev. Biochem. 1980, 8: 315
- For recent reviews, see:
- 2a 
             
            Burgess K. Acc. Chem. Res. 2001, 34: 826
- 2b 
             
            Souers AJ.Ellman JA. Tetrahedron 2001, 57: 7431
- 2c 
             
            Kim H.-O.Kahn M. Comb. Chem. High Throughput Screening 2000, 3: 167
- 2d 
             
            Halab L.Gosselin F.Lubell WD. Biopolymers 2000, 55: 101
- 2e 
             
            Hanessian S.McNaughton-Smith G.Lombart H.-G.Lubell WD. Tetrahedron 1997, 53: 12789
- 2f 
             
            Schneider JP.Kelly JW. Chem. Rev. 1995, 95: 2169
- For recent examples for the synthesis of peptidomimetics, see:
- 3a 
             
            Wang W.Yang J.Ying J.Xiong C.Zhang J.Cai C.Hruby VJ. J. Org. Chem. 2002, 67: 6353
- 3b 
             
            Kaul R.Deechongikit S.Kelly JW. J. Am. Chem. Soc. 2002, 124: 11900
- 3c 
             
            Trabocchi A.Occhiato EG.Potenza D.Guarna A. J. Org. Chem. 2002, 67: 7483
- 3d 
             
            Zhang X.Schmitt AC.Decicco CP. Tetrahedron Lett. 2002, 43: 9663
- 3e 
             
            Rinnova M.Nefzi A.Houghten RA. Tetrahedron Lett. 2002, 43: 2343
- 3f 
             
            Maison W.Küntzer D.Grohs D. Synlett 2002, 1795
- 3g 
             
            Maier TC.Frey WU.Podlech J. Eur. J. Org. Chem. 2002, 2686
- 3h 
             
            Grieco P.Campiglia P.Gomez-Monterrey I.Novellino E. Tetrahedron Lett. 2002, 43: 6297
- 3i 
             
            Polyak F.Lubell WD. J. Org. Chem. 2001, 66: 1171
- 3j 
             
            Feng Z.Lubell WD. J. Org. Chem. 2001, 66: 1181
- 3k 
             
            Stankova IG.Videnov GI.Golovinsky EV.Jung G. J. Pept. Sci. 1999, 5: 392
- 4a 
             
            Wipf P.Uto Y. J. Org. Chem. 2000, 65: 1037
- 4b 
             
            Faulkner DJ. Nat. Prod. Rep. 1999, 16: 155
- 4c 
             
            Wipf P. In Alkaloids: Chemical and Biological PerspectivesPelletier SW. Pergamon; New York: 1998. p.187-228
- 4d 
             
            Wipf P. Chem. Rev. 1995, 95: 2115
- 4e 
             
            Pettit GR. Pure Appl. Chem. 1994, 66: 2271
- 4f 
             
            Fusetani N.Matsunoga S. Chem. Rev. 1993, 93: 1793
- 4g 
             
            Davidson BS. Chem. Rev. 1993, 93: 1771
- 4h 
             
            Garson MJ. Chem. Rev. 1993, 93: 1699
- 5 
             
            Michael JP.Pattenden G. Angew. Chem., Int. Ed. Engl. 1993, 32: 1
- 6a 
             
            Singh Y.Stoermer MJ.Lucke AJ.Glenn MP.Fairlie DP. Org. Lett. 2002, 4: 3367
- 6b 
             
            Haberhauer G.Rominger F. Tetrahedron Lett. 2002, 43: 6335
- 6c 
             
            Pattenden G.Thompson T. Tetrahedron Lett. 2002, 43: 2459
- 6d 
             
            Singh Y.Sokolenko N.Kelso MJ.Gahan LR.Abbenante G.Fairlie DP. J. Am. Chem. Soc. 2001, 123: 333
- 6e 
             
            Pattenden G.Thompson T. Chem. Commun. 2001, 717
- 6f 
             
            Haberhauer G.Somogyi L.Rebek J. Tetrahedron Lett. 2000, 41: 5013
- 6g 
             
            Mink D.Mecozzi S.Rebek J. Tetrahedron Lett. 1998, 39: 5709
- 7 
             
            Shioiri T.Ninomiya K.Yamada S. J. Am. Chem. Soc. 1972, 94: 6203
- 8a 
             
            Dale JA.Mosher HS. J. Am. Chem. Soc. 1973, 95: 512
- 8b 
             
            Dale JA.Dull DL.Mosher HS. J. Org. Chem. 1969, 34: 2543
References
Crystal data for ( S , R )-9a: C19H20F3N3O4, M = 411.38, colorless crystals(polyhedron), dimensions 0.46 ¥ 0.24 ¥ 0.22 mm3, crystal system monoclinic, space group P21, Z = 4, a = 9.0411(3) Å, b = 18.2239(6) Å, c = 11.5691(4) Å, α = 90°, β = 102.9450(10)°, γ = 90°, V = 1857.73 (11) Å3, ρ = 1.471 g/cm3, T = 200 (2) K, 2θmax = 27.48°, radiation Mo Kα, λ = 0.71073 Å, 0.3° ω-scans with CCD area detector, covering a whole sphere in reciprocal space, 19250 reflections measured, 8436 unique [R(int) = 0.0220], 7545 observed [I >2σ(I)], intensities were corrected for Lorentz and polarization effects, an empirical absorption correction was applied using SADABS [11] based on the Laue symmetry of the reciprocal space, µ = 0.12 mm-1, Tmin = 0.95, Tmax = 0.97, structure solved by direct methods and refined against F2 with a Full-matrix least-squares algorithm using the SHELXTL-PLUS (5.10) software package, [12] 529 parameters refined, hydrogen atoms were treated using appropriate riding models, Flack absolute structure parameter 0.1(3), goodness of fit 1.01 for observed reflections, final residual values R1(F) = 0.030, wR2(F2) = 0.069 for observed reflections, residual electron density -0.18 to 0.18 eÅ-3. CCDC 199868 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html [or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax:+44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk].
10Crystal data for rac -7b: C18H21N3O4; M = 343.38, colorless crystals(polyhedron), dimensions 0.44 ¥ 0.22 ¥ 0.06 mm3, crystal system triclinic, space group P1, Z = 4, a = 7.3770(3) Å, b = 13.4649(5) Å, c = 17.9151(7) Å, α = 105.9240 (10)°, β = 91.5850 (10)°, γ = 90.7890 (10)°, V = 1710.15 (12) Å3, ρ = 1.334 g/cm3, T = 200(2) K, 2θmax = 27.49°, radiation Mo Kα, λ = 0.71073 Å, 0.3° ω-scans with CCD area detector, covering a whole sphere in reciprocal space, 17922 reflections measured, 7814 unique [R(int) = 0.0383], 4622 observed (I >2σ(I)), intensities were corrected for Lorentz and polarization effects, an empirical absorption correction was applied using SADABS [11] based on the Laue symmetry of the reciprocal space, µ = 0.10 mm-1, Tmin = 0.96, Tmax = 0.99, structure solved by direct methods and refined against F2 with a Full-matrix least-squares algorithm using the SHELXTL-PLUS (5.10) software package [12] , 455 parameters refined, hydrogen atoms were treated using appropriate riding models, goodness of fit 1.02 for observed reflections, final residual values R1(F) = 0.051, wR2(F2) = 0.129 for observed reflections, residual electron density -0.29 to 0.57 eÅ-3. CCDC 199869 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html [or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax:+44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk].
11Program SADABS V2.03 for absorption correction: Sheldrick, G. M.; Bruker Analytical X-ray-Division, Madison, Wisconsin 2001.
12Software package SHELXTL V5.10 for structure solution and refinement: Sheldrick, G. M.; Bruker Analytical X-ray-Division, Madison, Wisconsin 1997.
 
    