Abstract
A new methodology for the synthesis of chalcogenoenynes is described.
The palladium-catalyzed cross-coupling reaction of 1,2-bis(organanylchalcogeno)-alkenes
and 1-alkynes gave the corresponding chalcogenoenynes in 71% to
88% yields. Preliminary pharmacologycal tests suggest that
chalcogenoenynes may be useful drugs as anti-inflammatory and antinociceptive
agents.
Key words
cross-coupling - chalcogenoenynes - palladium - tellurium - 1,2-bis(organanylchalcogeno)-alkenes
References
<A NAME="RS04403ST-1">1 </A>
Tamao K. In Comprehensive
Organic Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pergamon;
New
York:
1991.
p.435-480
<A NAME="RS04403ST-2">2 </A>
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron
Lett.
1975,
4467
<A NAME="RS04403ST-3A">3a </A>
Alami M.
Linstrumelle G.
Tetrahedron
Lett.
1991,
32:
6109
<A NAME="RS04403ST-3B">3b </A>
Alami M.
Peyrat J.-F.
Brion J.-D.
Synthesis
2000,
1499
<A NAME="RS04403ST-4">4 </A>
Dieck HA.
Heck FR.
J. Orgmet. Chem.
1975,
93:
259
<A NAME="RS04403ST-5">5 </A>
Scott WJ.
Peña MR.
Sward K.
Stoessel SJ.
Stille JK.
J. Org. Chem.
1985,
50:
2302
<A NAME="RS04403ST-6">6 </A>
Alami M.
Crousse B.
Ferri F.
J.
Orgmet. Chem.
2001,
624:
114
<A NAME="RS04403ST-7">7 </A>
Miyaura N.
Yamada K.
Suginome H.
Suzuki A.
J. Am. Chem. Soc.
1985,
107:
972
<A NAME="RS04403ST-8A">8a </A>
Normant JF.
Commerçon A.
Villièras J.
Tetrahedron Lett.
1975,
1465
<A NAME="RS04403ST-8B">8b </A>
Alexakis A.
Cahiez G.
Normant JF.
Synthesis
1979,
826
<A NAME="RS04403ST-9">9 </A>
Magriotis PA.
Scott ME.
Kim KD.
Tetrahedron
Lett.
1991,
32:
6085
<A NAME="RS04403ST-10">10 </A>
Negishi EI.
Okukado N.
King AO.
Van Horn DE.
Spiegel BI.
J. Am. Chem. Soc.
1978,
100:
2254
<A NAME="RS04403ST-11">11 </A>
Dang HP.
Linstrumelle G.
Tetrahedron Lett.
1978,
19:
191
<A NAME="RS04403ST-12A">12a </A>
Zeni G.
Comasseto JV.
Tetrahedron
Lett.
1999,
40:
4619
<A NAME="RS04403ST-12B">12b </A>
Zeni G.
Menezes PH.
Moro AV.
Braga AL.
Silveira CC.
Stefani HA.
Synlett
2001,
1473
<A NAME="RS04403ST-12C">12c </A>
Zeni G.
Nogueira CW.
Panatieri RB.
Silva DO.
Menezes PH.
Braga AL.
Silveira CC.
Stefani HA.
Rocha JBT.
Tetrahedron
Lett.
2001,
42:
7921
<A NAME="RS04403ST-12D">12d </A>
Zeni G.
Lüdtke DS.
Nogueira CW.
Panatieri RB.
Braga AL.
Silveira CC.
Stefani HA.
Rocha JBT.
Tetrahedron Lett.
2001,
42:
8927
<A NAME="RS04403ST-13A">13a </A>
Barrientos-Astigarraga RE.
Moraes DN.
Comasseto JV.
Tetrahedron
Lett.
1999,
40:
265
<A NAME="RS04403ST-13B">13b </A>
De Araujo MA.
Comasseto JV.
Synlett
1995,
1145
<A NAME="RS04403ST-13C">13c </A>
Barrientos-Astigarraga RE.
Castelani P.
Comasseto JV.
Formiga HB.
Silva NC.
Sumida CY.
Vieira ML.
J.
Orgmet. Chem.
2001,
623:
43
<A NAME="RS04403ST-14A">14a </A>
Mitchell TN.
Wickenkamp R.
Amamria A.
Dieke R.
Schneider U.
J. Org. Chem.
1987,
52:
4868
<A NAME="RS04403ST-14B">14b </A>
Sharma S.
Oehlschlage AC.
Tetrahedron Lett.
1986,
27:
6161
<A NAME="RS04403ST-14C">14c </A>
Hibino JC.
Matsubara S.
Morizawa Y.
Oshina K.
Tetrahedron
Lett.
1984,
25:
2151
<A NAME="RS04403ST-15">15 </A>
Mugesh G.
Singh HB.
Acc. Chem. Res.
2002,
35:
226 ; and references cited therein
<A NAME="RS04403ST-16A">16a </A>
Yoshida T.
Negishi EI.
J.
Am. Chem. Soc.
1981,
103:
1276
<A NAME="RS04403ST-16B">16b </A>
Negishi EI.
Pure and Appl. Chem.
1981,
53:
2333
<A NAME="RS04403ST-17A">17a </A>
Tucker CE.
Knochel P.
J.
Am. Chem. Soc.
1991,
113:
9888
<A NAME="RS04403ST-17B">17b </A>
Tucker CE.
Greve B.
Klein W.
Knochel P.
Organometallics
1994,
13:
94
<A NAME="RS04403ST-18">18 </A>
Lipshutz BH.
Keil R.
Barton JC.
Tetrahedron
Lett.
1992,
33:
5861
<A NAME="RS04403ST-19">19 </A>
Waas JR.
Sidduri AR.
Knochel P.
Tetrahedron
Lett.
1992,
33:
3717
<A NAME="RS04403ST-20A">20a </A>
Pelter A.
Colclough EM.
Tetrahedron
1995,
51:
811
<A NAME="RS04403ST-20B">20b </A>
Cooke MP.
J. Org. Chem.
1994,
59:
2930
<A NAME="RS04403ST-21A">21a </A>
Srebnik M.
Deloux L.
Sabat M.
J. Org. Chem.
1995,
69:
3276
<A NAME="RS04403ST-21B">21b </A>
Srebnik M.
Deloux L.
J. Org. Chem.
1994,
59:
6871
<A NAME="RS04403ST-21C">21c </A>
Deloux L.
Skrzypczac-Jankun E.
Cheesman BV.
Srebnik M.
Sabat M.
J. Am. Chem. Soc.
1994,
116:
10302
<A NAME="RS04403ST-22A">22a </A>
Kolb M.
Synthesis
1990,
171
<A NAME="RS04403ST-22B">22b </A>
Silveira CC.
Perin G.
Braga AL.
Tetrahedron Lett.
1995,
36:
7361
<A NAME="RS04403ST-22C">22c </A>
Braga AL.
Reckziegel A.
Silveira CC.
Comasseto JV.
Synth.
Commun.
1994,
24:
1165
<A NAME="RS04403ST-22D">22d </A>
Dabdoub MJ.
Cassol TM.
Barbosa SL.
Tetrahedron Lett.
1996,
37:
831
<A NAME="RS04403ST-22E">22e </A>
Stefani HA.
Comasseto JV.
Petragnani N.
Braga AL.
Menezes PH.
Gusevskaya EV.
Phosphorus,
Sulfur and Silicon
1997,
126:
211
<A NAME="RS04403ST-22F">22f </A>
Dabdoub MJ.
Begnini ML.
Guerrero PG.
Tetrahedron
1998,
54:
2371
<A NAME="RS04403ST-22G">22g </A>
Denis JN.
Desauvage S.
Hevesi L.
Krief A.
Tetrahedron
Lett.
1981,
22:
4009
<A NAME="RS04403ST-23">23 </A>
Braga AL.
Zeni G.
Silveira CC.
Synlett
1997,
595
<A NAME="RS04403ST-24A">24a </A>
Braga AL.
Zeni G.
Andrade LH.
Silveira CC.
Stefani HA.
Synthesis
1998,
39
<A NAME="RS04403ST-24B">24b </A>
Zeni G.
Perin G.
Cella R.
Jacob RG.
Braga AL.
Silveira CC.
Stefani HA.
Synlett
2002,
6:
975
<A NAME="RS04403ST-25">25 </A>
Dabdoub MJ.
Dabdoub VB.
Pereira MA.
Tetrahedron Lett.
2001,
1595
<A NAME="RS04403ST-26">26 </A>
Pd(II) Catalyzed
Cross-Coupling Reaction of 1,2-Bis(organanylchalcogeno)-alkenes
1a with 2-Propyn-1-ol; General Procedure: To a solution of
PdCl2 (20 mol%, 0.035 g), CuI (20 mol%,
0.038g) in MeOH (5 mL) at room temperature under argon atmosphere,
were added 1a (0.327g, 1 mmol), 2-propyn-1-ol
(0.112 g, 0.12 mL, 2 mmol) and Et3 N (0.8 mL). The mixture
was stirred for the time indicated in Table
[1 ]
, treated with NH4 Cl
saturated solution (5 mL) and then extracted with ethyl acetate.
The organic layer was washed with brine and dried over MgSO4 .
The solvent was evaporated and the residue was purified by flash
silica-gel chromatography eluted with hexane/ethyl acetate
(7:3) to yield 2b in 81% yield
(0.16 g). 1 H NMR (200 MHz, CDCl3 ) δ 6.09
(s, 1 H), 4.39(s, 2 H), 2.26 (s, 3 H), 2.06 (t,
J = 7.0
Hz, 2 H,), 1.98 (s, 1 H), 1.43 (quint, J = 7.0
Hz, 2 H), 1.23-1.17 (m, 4 H), 0.88 (t, J = 6.5
Hz, 3 H); 13 C NMR (50 MHz, CDCl3 ) δ 134.51,
119.35, 94.97, 83.48, 51.54, 36.82, 31.03, 28.08, 22.35, 16.77,
13.92; IR (neat, cm-1 ) ν 3363, 2921,
2214, 1660, 1436; LRMS (rel. int.) m /z 198 (30), 180 (44), 151 (100), 133
(17), 71 (83), 47 (38).