Subscribe to RSS
DOI: 10.1055/s-2002-34942
Mutationen des Wachstumsfaktor-Rezeptors Flt3 bei Akuter Myeloischer Leukämie
Transformation myeloischer Zellen durch Ras-abhängige und Ras-unabhängige Mechanismen[1] Mutations of growth factor receptor Flt3 in acute myeloid leukemiaTransformation of myeloid cells by Ras-dependent and Ras-independent mechanismsPublication History
eingereicht: 22.7.2002
akzeptiert: 23.9.2002
Publication Date:
18 October 2002 (online)

Hintergrund und Fragestellung: Der Wachstumsfaktor-Rezeptor Flt3 vermittelt in Vorläuferzellen der Hämatopoese Proliferation und Überleben. Bei 30 % der Patienten mit Akuter Myeloischer Leukämie (AML) wurden somatische Mutationen von Flt3 identifiziert, die mit einer schlechten Prognose verbunden sind. In-vitro- und Tierversuchsdaten zeigen, dass diese Mutationen an der leukämischen Transformation beteiligt sind. Für die Entwicklung molekular definierter antileukämischer Therapiestrategien ist eine genaue Evaluation der molekularen Mechanismen der leukämischen Transformation notwendig.
Methoden: Die mRNA mutierter Flt3-Rezeptoren von zwei Patienten mit AML wurde isoliert und in einer Modell-Zelllinie exprimiert (32D). Diese Zellen wurden unter verschiedenen Bedingungen auf ihr Überleben, ihre Wachstumsfaktor-abhängige Proliferation, sowie auf den Aktivierungszustand von Signalmediatoren und auf die Expression ihrer Zielgene untersucht. Zudem wurden die Auswirkungen einer Inhibition von Ras, MAP-Kinasen und der PI3-Kinase analysiert.
Ergebnisse: Die Expression von Flt3-Mutationen (Flt3-ITD) führte zu faktorunabhängiger Proliferation und Überleben der myeloischen Vorläuferzelllinie 32D. Dabei wurden neben Ras- und PI3-Kinase-abhängigen Signalen auch die Proteine STAT5 und STAT3 aktiviert. Die Aktivierung von STAT-Proteinen führte zur Induktion bekannter STAT-Zielgene, wie SOCS2, SOCS3 und CIS. Inhibition von Ras durch ein dominant-negatives Ras-Konstrukt sowie von MAP-Kinasen durch einen chemischen Inhibitor führte zur Aufhebung einiger, jedoch nicht aller biologischer Effekte von Flt3-ITD. Hingegen führte die Inhibition der PI3-Kinase-Aktivität zur Aufhebung der mutationsvermittelten Wachstumsfaktorunabhängigkeit von 32D-Zellen.
Folgerung: Die Hemmung Ras-abhängiger Signalwege ist nicht ausreichend, um die Auswirkungen von Flt3-Mutationen in myeloischen Zellen aufzuheben. Der therapeutische Einsatz von Farnesyltransferase-Hemmern, deren wesentliche Wirkung durch die Inhibition Ras-abhängiger Signale erfolgt, ist daher möglicherweise nicht dazu geeignet, Flt3-abhängige Erkrankungen zu behandeln.
Background and objective: The tyrosine kinase receptor Flt3 mediates important functions in early hematopoietic progenitors. Recently mutations of a growth factor receptor have been identified in about 30 % of patients with acute myeloid leukemia (AML). These mutations are associated with a poor prognosis. In-vitro and animal data show their involvement in leukemic transformation. Experiments analyzing the effects of these mutations on signal transduction and gene expression patterns of myeloid cells allow for the classification of this receptor as an oncogene. Furthermore, they help to define the receptor and its signaling intermediates as therapeutic targets.
Methods: In order to analyze the signaling properties of mutated FLT3 receptors, we isolated the receptor mRNA from two patients with AML. Wild-type and mutant Flt3 isoforms were expressed in 32D cells that were subsequently analyzed for proliferation, survival, activation of signaling intermediates and gene expression levels. Also, the effects of of Ras-, MAP-Kinase and PI3-Kinase inhibition were analyzed.
Results: The expression of mutated Flt3 (Flt3-ITD) induced factor-independent proliferation and survival in the myeloid progenitor cell line 32D. Flt3-ITD activated Ras- and PI3-kinase-dependent signaling pathways, as well as STAT5 and STAT3. Activation of STAT proteins was followed by the induction of known STAT target genes like SOCS2, SOCS3 and CIS. Inhibition of Ras-dependent signal transduction by a dominant negative Ras construct inhibited some, but not all biological effects of Flt3-ITD. Similar results were obtained by chemical inhibition of the MAP kinases. In contrast, inhibition of PI3 kinase activity inhibited growth factor-independent growth and apoptosis resistance of 32D cells.
Conclusions: Inhibition of Ras-dependent signaling pathways is not sufficient to abrogate the functional consequences of Flt3-mutations in myeloid cells. Therefore, therapeutic intervention by Ras-Inhibitors may not be sufficient to treat Flt3-driven disease.
1 Die hier gezeigten Arbeiten waren Gegenstand der Medizinischen Promotionsarbeit von Frau Claudia Steur. Gefördert von der Deutschen Forschungsgemeinschaft (Se 600/2-4; Mu 1328/2-1) und vom IZKF Münster (H4).
Literatur
- 1
Abu-Duhier F M, Goodeve A C, Wilson G A, Care R S, Peake I R, Reilly J T.
Identification of novel FLT-3 Asp835 mutations
in adult acute myeloid leukaemia.
Br J Haematol.
2001;
113
983-988
MissingFormLabel
- 2
Cantley L C.
The
phosphoinositide 3-kinase pathway.
Science.
2002;
296
1655-1657
MissingFormLabel
- 3
Epling-Burnette P K, Liu J H, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, Li Y, Wang J M, Yang-Yen H F, Karras J, Jove R, Loughran T P.
Inhibition
of STAT3 signaling leads to apoptosis of leukemic large granular
lymphocytes and decreased Mcl-1 expression.
J Clin Invest.
2001;
107
351-362
MissingFormLabel
- 4
Fenski R, Flesch K, Serve S, Mizuki M, Oelmann E, Kratz-Albers K, Kienast J, Leo R, Schwartz S, Berdel W E, Serve H.
Constitutive activation
of FLT3 in acute myeloid leukaemia and its consequences for growth
of 32D cells.
Br J Haematol.
2000;
108
322-330
MissingFormLabel
- 5
Franke T F, Kaplan D R, Cantley L C.
PI3K: downstream AKTion blocks apoptosis.
Cell.
1997;
88
435-437
MissingFormLabel
- 6
Grad J M, Zeng X R, Boise L H.
Regulation of Bcl-xL: a little bit of this
and a little bit of STAT.
Curr Opin Oncol.
2000;
12
543-549
MissingFormLabel
- 7
Hackel P O, Zwick E, Prenzel N, Ullrich A.
Epidermal growth factor
receptors: critical mediators of multiple receptor pathways.
Curr
Opin Cell Biol.
1999;
11
184-189
MissingFormLabel
- 8
Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, Naoe T.
Tandem-duplicated
Flt3 constitutively activates STAT5 and MAP kinase and introduces
autonomous cell growth in IL-3-dependent cell lines.
Oncogene.
2000;
19
624-631
MissingFormLabel
- 9
Karp J E, Kaufmann S H, Adjei A A, Lancet J E, Wright J J, End D W.
Current status
of clinical trials of farnesyltransferase inhibitors.
Curr
Opin Oncol.
2001;
13
470-476
MissingFormLabel
- 10
Kelly L M, Liu Q, Kutok J L, Williams I R, Boulton C L, Gilliland D G.
FLT3
internal tandem duplication mutations associated with human acute
myeloid leukemias induce myeloproliferative disease in a murine
bone marrow transplant model.
Blood.
2002;
99
310-318
MissingFormLabel
- 11
Kerkhoff E, Rapp U R.
Cell cycle targets
of Ras/Raf signalling.
Oncogene.
1998;
17
1457-1462
MissingFormLabel
- 12
Kiyoi H, Naoe T, Nakano Y. et
al .
Prognostic implication of FLT3 and N-RAS gene mutations
in acute myeloid leukemia.
Blood.
1999;
93
3074-3080
MissingFormLabel
- 13
Leonard W J, O’Shea J J.
Jaks
and STATs: biological implications.
Annu Rev Immunol.
1998;
16
293-322
MissingFormLabel
- 14
Lyman S D, Jacobsen S E.
c-kit ligand
and Flt3 ligand: stem/progenitor cell factors with overlapping
yet distinct activities.
Blood.
1998;
91
1101-1134
MissingFormLabel
- 15
Mizuki M, Fenski R, Halfter H. et al .
Flt3 mutations from patients with acute
myeloid leukemia induce transformation of 32D cells mediated by the
Ras and STAT5 pathways.
Blood.
2000;
96
3907-3914
MissingFormLabel
- 16
Müller C, Readhead C, Diederichs S, Idos G, Yang R, Tidow N, Serve H, Berdel W E, Koeffler H P.
Methylation
of the cyclin A1 promoter correlates with gene silencing in somatic
cell lines, while tissue-specific expression of cyclin A1 is methylation
independent.
Mol Cell Biol.
2000;
20
3316-3329
MissingFormLabel
- 17
Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, Fujimoto T, Misawa S.
Internal
tandem duplication of the flt3 gene found in acute myeloid leukemia.
Leukemia.
1996;
10
1911-1918
MissingFormLabel
- 18
Ning Z Q, Li J, Arceci R J.
Signal
transducer and activator of transcription 3 activation is required
for Asp(816) mutant c-Kit-mediated cytokine-independent survival
and proliferation in human leukemia cells.
Blood.
2001;
97
3559-3567
MissingFormLabel
- 19
Rodriguez-Viciana P, Warne P H, Dhand R, Vanhaesebroeck B, Gout I, Fry M J, Waterfield M D, Downward J.
Phosphatidylinositol-3-OH
kinase as a direct target of Ras (see comments).
Nature.
1994;
370
527-532
MissingFormLabel
- 20
Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, Löffler H, Sauerland C M, Serve H, Büchner T, Haferlach T, Hiddemann W.
Analysis of FLT3 length mutations in 1003
patients with acute myeloid leukemia: correlation to cytogenetics,
FAB subtype, and prognosis in the AMLCG study and usefulness as
a marker for the detection of minimal residual disease.
Blood.
2002;
100
59-66
MissingFormLabel
- 21
Serve H, Yee N S, Stella G, Sepp-Lorenzino L, Tan J C, Besmer P.
Differential roles
of PI3-kinase and Kit tyrosine 821 in Kit receptor- mediated proliferation,
survival and cell adhesion in mast cells.
Embo J.
1995;
14
473-483
MissingFormLabel
- 22
Spiekermann K, Pau M, Schwab R, Schmieja K, Franzrahe S, Hiddemann W.
Constitutive activation
of STAT3 and STAT5 is induced by leukemic fusion proteins with protein
tyrosine kinase activity and is sufficient for transformation of
hematopoietic precursor cells.
Exp Hematol.
2002;
30
262-271
MissingFormLabel
- 23
Sternberg D W, Tomasson M H, Carroll M, Curley D P, Barker G, Caprio M, Wilbanks A, Kazlauskas A, Gilliland D G.
The TEL/PDGFbetaR fusion in chronic
myelomonocytic leukemia signals through STAT5-dependent and STAT5-independent
pathways.
Blood.
2001;
98
3390-3397
MissingFormLabel
- 24
Teller S, Krämer D, Böhmer S -A, Tse K F, Small D, Mahboobo S, Wallrapp C, Beckers T, Kratz-Albers K, Schwäble J, Serve H, Böhmer F -D.
Bis(1H-2-indolyl)-1-methanones as inhibitors
of the hematopoietic tyrosine kinase Flt3.
Leukemia.
2002;
in press
MissingFormLabel
- 25
Tse K F, Mukherjee G, Small D.
Constitutive
activation of FLT3 stimulates multiple intracellular signal transducers
and results in transformation.
Leukemia.
2000;
14
1766-1776
MissingFormLabel
- 26
Vojtek A B, Hollenberg S M, Cooper J A.
Mammalian Ras interacts directly with the
serine/threonine kinase Raf.
Cell.
1993;
74
205-214
MissingFormLabel
- 27
Warne P H, Viciana P R, Downward J.
Direct
interaction of Ras and the amino-terminal region of Raf-1 in vitro.
Nature.
1993;
364
352-355
MissingFormLabel
- 28
Whitman S P, Archer K J, Feng L. et al .
Absence of the wild-type allele predicts
poor prognosis in adult de novo acute myeloid leukemia with normal
cytogenetics and the internal tandem duplication of FLT3: a cancer and
leukemia group B study.
Cancer Res.
2001;
61
7233-7239
MissingFormLabel
- 29
Yamamoto Y, Kiyoi H, Nakano Y. et al .
Activating mutation of D835 within the
activation loop of FLT3 in human hematologic malignancies.
Blood.
2001;
97
2434-2439
MissingFormLabel
- 30
Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, Sonoda Y, Abe T, Kahsima K, Matsuo Y, Naoe T.
Internal tandem duplication
of the FLT3 gene is preferentially seen in acute myeloid leukemia
and myelodysplastic syndrome among various hematological malignancies.
A study on a large series of patients and cell lines.
Leukemia.
1997;
11
1605-1609
MissingFormLabel
- 31
Zhang S, Fukuda S, Lee Y, Hangoc G, Cooper S, Spolski R, Leonard W J, Broxmeyer H E.
Essential role of signal transducer
and activator of transcription (Stat)5a but not Stat5b for Flt3-dependent
signaling.
J Exp Med.
2000;
192
719-728
MissingFormLabel
1 Die hier gezeigten Arbeiten waren Gegenstand der Medizinischen Promotionsarbeit von Frau Claudia Steur. Gefördert von der Deutschen Forschungsgemeinschaft (Se 600/2-4; Mu 1328/2-1) und vom IZKF Münster (H4).
Priv.-Doz. Dr. med. Hubert Serve
Medizinische Klinik A, Universitätsklinikum
Münster
Albert-Schweitzer-Straße 33
48129 Münster
Phone: 0251/8352671
Fax: 0251/8352673
Email: serve@uni-muenster.de