RSS-Feed abonnieren
DOI: 10.1055/s-2002-32967
First Stereocontrolled Reduction of Isoxazoline by Hydrogenolysis: A New Route to Iminosugars via Cyclic Sulfates
Publikationsverlauf
Publikationsdatum:
25. Juli 2002 (online)

Abstract
The synthesis of four new trihydroxylated piperidines, considered as analogues of 1-deoxynojirimycin (DNJ) and 1-deoxy-mannojirimycin (DMJ), was achieved using cyclic sulfate substituted isoxazoline derivatives. The key step is the one-pot reduction of an isoxazoline to an amine which undergoes intramolecular attack on the sulfate ester with high stereoselectivity and regioselectivity. The isoxazoline precursors were obtained by the 1,3-dipolar cycloaddition reaction between 2,2-dimethyl-4-vinyl-1,3-dioxolane and 1-benzyloxy-2-nitroethane.
Key words
cyclic sulfates - iminosugars - piperidines - cycloadditions - glycosidase inhibitors
- 1
Watson AA.Fleet GWJ.Asano N.Molyneux RJ.Nash RJ. Phytochemistry 2001, 56: 265 - 2
Asano N.Nash RJ.Molyneux RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1645 - 3
Stütz AE. Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond Wiley-VCH; Weinheim: 1999. - 4
Chapleur Y. Carbohydrate Mimics - Concepts and Methods Wiley-VCH; Weinheim: 1998. - 5
Kajimoto T.Liu KKC.Pederson RL.Zhong Z.Ichikawa Y.Porco JAJ.Wong C.-H. J. Am. Chem. Soc. 1991, 113: 6187 - 6
Takayama S.Martin R.Wu R.Laslo K.Siuzdak G.Wong C.-H. J. Am. Chem. Soc. 1997, 119: 8146 - 7
Hecquet L.Lemaire M.Bolte J.Demuynck C. Tetrahedron Lett. 1994, 35: 8791 - 8
Lemaire M.Valentin ML.Hecquet L.Demuynck C.Bolte J. Tetrahedron: Asymmetry 1995, 6: 67 - 9
Jang KC.Jeong IY.Yang MS.Choi SU.Park KH. Heterocycles 2000, 53: 887 - 10
Ichikawa Y.Igarashi Y.Ichikawa M.Suhara Y. J. Am. Chem. Soc. 1998, 120: 3007 - 11
Andersen SM.Ekhart C.Lundt I.Stütz AE. Carbohydr. Res. 2000, 326: 22 - 12
Jaeger V.Schwab W.Buss V. Angew. Chem., Int. Ed. Engl. 1981, 20: 601 - 13
Mueller I.Jaeger V. Tetrahedron Lett. 1982, 23: 4777 - 14
Jaeger V.Schohe R. Tetrahedron 1984, 40: 2199 - 15
Jaeger V.Mueller I. Tetrahedron 1985, 41: 3519 - 16
Jaeger V.Mueller I.Paulus EF. Tetrahedron Lett. 1985, 26: 2997 - 17
Jaeger V.Schroeter D. Synthesis 1990, 556 - 18
Wade PA.D’Ambrosio SG.Price DT. J. Org. Chem. 1995, 60: 6302 - 19
de Blas J.Carretero JC.Dominguez E. Tetrahedron: Asymmetry 1995, 6: 1035 - 20
Schaller C.Vogel P.Jaeger V. Carbohydr. Res. 1998, 314: 25 - 21
Mueller R.Leibold T.Paetzel M.Jaeger V. Angew. Chem., Int. Ed. Engl. 1994, 33: 1295 - 22
Gefflaut T.Martin C.Delor S.Besse P.Veschambre H.Bolte J. J. Org. Chem. 2001, 66: 2296 - 23
Mukaiyama T.Hoshino T. J. Am. Chem. Soc. 1960, 82: 5339 - 24
Kantorowski EJ.Brown SP.Kurth MJ. J. Org. Chem. 1998, 63: 5272 - 25
Byun HS.He LL.Bittman R. Tetrahedron 2000, 56: 7051 - 26
Gao Y.Sharpless KB. J. Am. Chem. Soc. 1988, 110: 7538 - 28
Barco A.Benetti S.De Risi C.Marchetti P.Pollini GP.Zanirato V. Tetrahedron 1999, 55: 5923 - 29
Ghavami A.Johnston BD.Pinto BM. J. Org. Chem. 2001, 66: 2312
References
Typical Procedure for Preparation of 15. A solution of 13 (1.08 g, 3.45 mmol) in anhyd MeOH (50 mL) was stirred under H2 in the presence of 10% Pd/C (500 mg) and anhyd Na2CO3 (183 mg, 1.73 mmol) for 6 h. The solids were removed by filtration through a membrane filter (0.2 µm) and the filtrate concentrated under vacuum. The residue was neutralized with HCl 1N, then purified over an acidic resin (Dowex 50WX8, 200-400 mesh) using water as eluent. Compound 15 was isolated as a white solid in 82% yield (892 mg).
30All new compounds reported here were
racemic and gave satisfactory spectral data (1H
and 13C NMR, IR, mass). Selected spectral
data (1H and 13C), 15: 1H NMR (300 MHz, D2O): δ = 1.78
(ddd, 1 H, J = 13
Hz), 1.96 (ddd, 1 H, J = 13, 3.5,
3.5 Hz), 3.24 (dd, 1 H, J = 14,
1 Hz), 3.52 (m, 1 H), 3.63 (dd, 1 H, J = 11, 8 Hz), 3.71 (dd,
1 H, J = 11,
8 Hz), 3.81 (dd, 1 H, J = 14, 3 Hz), 4.03 (ddd,
1 H, J = 13,
3.5, 3.5 Hz), 4.61 (s, 2 H), 4.75 (m, 1 H), 7.43 (m, 5 H). 13C
NMR (100 MHz, D2O): δ = 30.3 (C4),
48.6 (C1), 57.8 (C5), 66.9 (C3), 71.8
(C6 or C7), 75.7 (C2), 75.9 (C7 or
C6), 131.3-131.6
(C9-10-11),
139.8 (C8). 17: 1H
NMR (300 MHz, D2O): δ = 1.86 (AB, 1
H, J = 13
Hz), 1.91 (AB, 1 H), 3.21 (dd, 1 H, J = 14, 1 Hz), 3.46 (dd,
1 H, J = 14,
3 Hz), 3.53 (m, 1 H), 3.66 (dd, 1 H, J = 11, 8 Hz), 3.75 (dd,
1 H, J = 11,
4 Hz), 3.99 (m, 1 H), 4.17 (m, 1 H), 4.65 (s, 2 H), 7.46 (m, 5
H). 13C NMR (75 MHz, D2O): δ = 29.8
(C4), 50.9 (C1), 57.9 (C5), 67.6
(C3), 69.6 (C2), 72.0 (C6 or C7),
76.0 (C6 or C7), 131.4-131.7
(C9-10-11),
140.0 (C8). 18: 1H
NMR (300 MHz, D2O): δ = 1.80 (ddd,
1 H, J = 13
Hz), 2.00 (ddd, 1 H, J = 13,
3.5, 3.5 Hz), 3.28 (dd, 1 H, J = 14,
1 Hz), 3.42 (dddd, 1 H, J = 13,
8, 4, 3.5 Hz), 3.68 (dd, 1 H, J = 12.5,
8 Hz), 3.81 (dd, 1 H, J = 12.5, 4
Hz), 3.86 (dd, 1 H, J = 14, 3 Hz), 4.08 (ddd,
1 H, J = 13, 4.5,
3.5 Hz), 4.79 (m, 1 H). 13C NMR (75
MHz, D2O): δ = 30.1 (C4),
48.5 (C1), 59.7 (C5), 64.0 (C6),
68.5 (C3), 75.6 (C2). 16: 1H
NMR (400 MHz, (CD3)2SO): δ = 1.42
(ddd, 1 H, J = 13,
13, 13 Hz), 2.00 (ddd, 1 H, J = 13,
4.5, 4.5 Hz), 2.81 (dd, 1 H, J = 13,
11 Hz), 3.40 (m, 1 H), 3.50 (m, 1 H), 3.56-3.80 (m, 3 H),
4.12 (m, 1 H), 4.55 (AB, 2 H, J = 12
Hz), 7.36 (m, 5 H). 13C NMR (100 MHz,
D2O): δ = 32.2 (C4), 44.7 (C1),
53.7 (C5), 68.1 (C3), 69.6 (C6),
72.6 (C7), 74.4 (C2), 127.9-128.6
(C9-10-11), 137.9 (C8).