Abstract
A highly efficient method for the preparation of LNA (Locked Nucleic Acid) phosphoramidite
monomers with 2-cyanoethyl-N,N,N′,N′-tetraisopropylphosphorodiamidite and 4,5-dicyanoimidazole has been devised. The
quality of the phosphoramidites prepared in this manner is equal to HPLC purified
phosphoramidites and can easily be used for oligonucleotide synthesis without further
purification. In addition the possibility of using 4,5-dicyanoimidazole in catalytic
amounts has been investigated and showed optimum results when 0.7 equivalent was used,
and that reducing the amount further leads to undesired phosphitylation of the nucleobase.
Furthermore it is demonstrated that LNA phosphoramidite monomers are exceedingly stable
in acetonitrile solution thereby prolonging the effective lifetime of the reagent
significantly.
Key words
phosphoramidites - phosphitylations - phosphitylation activators - nucleotide analogues
- bicyclic compounds
References
<A NAME="RC00402SS-1">1</A>
We have defined LNA as an oligonucleotide containing one or more 2′-O,4′-C-methylene-β-d-ribofuranosyl nucleotide monomer(s). LNA has recently also been named 2′,4′-BNA.
[2]
<A NAME="RC00402SS-2">2</A>
Obika S.
Hari Y.
Sugimoto T.
Sekiguchi M.
Imanishi T.
Tetrahedron Lett.
2000,
41:
8923
<A NAME="RC00402SS-3">3</A>
Koshkin A.
Singh SK.
Nielsen P.
Rajwanshi VK.
Kumar R.
Meldgaard M.
Olsen CE.
Wengel J.
Tetrahedron
1998,
54:
3607
<A NAME="RC00402SS-4">4</A>
Singh SK.
Nielsen P.
Koshkin A.
Wengel J.
Chem. Commun.
1998,
455
<A NAME="RC00402SS-5">5</A>
Obika S.
Nanbu D.
Hari Y.
Morio JAK.
Doi T.
Imanishi T.
Tetrahedron Lett.
1998,
39:
5401
<A NAME="RC00402SS-6">6</A>
Wengel J. In
Antisense Drug Technology, Principles, Strategies, and Applications
Crooke ST.
Marcel Dekker;
New York:
2001.
p.339
<A NAME="RC00402SS-7">7</A>
Cook PD.
Nucleosides Nucleotides
1999,
18:
1141
<A NAME="RC00402SS-8">8</A>
Oerum H.
Jacobsen MH.
Koch T.
Vuust J.
Borre MB.
Clin. Chem.
1999,
1898
<A NAME="RC00402SS-9">9</A>
Braasch DA.
Corey R.
Chem. Biol.
2000,
55:
1
<A NAME="RC00402SS-10">10</A>
Wahlestedt C.
Salmi P.
Good L.
Kela J.
Johnsson T.
Hokfelt T.
Broberger C.
Porreca F.
Lai J.
Ren K.
Ossipov M.
Koshkin A.
Jakobsen N.
Skouv J.
Oerum H.
Jacobsen MH.
Wengel J.
Proc. Natl. Acad. Sci. U.S.A.
2000,
97:
5633
<A NAME="RC00402SS-11">11</A>
Uhlmann E.
Curr. Opin. Drug Discovery Dev.
2000,
3:
203
<A NAME="RC00402SS-12">12</A>
Baker BF.
Monia BP.
Biochim. Biophys. Acta
1999,
1489:
3
<A NAME="RC00402SS-13">13</A>
Bennett CF.
Cowsert LM.
Biochim. Biophys. Acta
1999,
1489:
19
<A NAME="RC00402SS-14">14</A>
Salmi P.
Kela J.
Good F.
Wengel J.
Wahlestedt C.
Society for Neuroscience
1999,
25:
2003
<A NAME="RC00402SS-15">15</A>
Elayadi AN.
Corey DR.
Curr. Opin. Chem. Biol.
2001,
2:
558
<A NAME="RC00402SS-16">16</A>
Oerum H.
Wengel J.
Curr. Opin. Chem. Biol.
2001,
3:
239
<A NAME="RC00402SS-17">17</A>
Obika S.
Uneda T.
Sugimoto T.
Nanbu D.
Takefumi T.
Imanishi T.
Bioorg. Med. Chem.
2001,
9:
1001
<A NAME="RC00402SS-18">18</A>
Koshkin AA.
Fensholdt J.
Pfundheller HM.
Lomholt C.
J. Org. Chem.
2001,
66:
8504
<A NAME="RC00402SS-19">19</A>
Sinha ND.
McManus J.
Köster H.
Nucleic Acids Res.
1984,
12:
4539
<A NAME="RC00402SS-20">20</A>
Nielsen J.
Taagaard M.
Marugg JE.
van Boom JH.
Dahl O.
Nucleic Acids Res.
1986,
14:
7391
<A NAME="RC00402SS-21">21</A>
Håkansson AE.
Koshkin AA.
Sørensen MD.
Wengel J.
J. Org. Chem.
2000,
65:
5161
<A NAME="RC00402SS-22">22</A>
Singh SK.
Kumar R.
Wengel J.
J. Org. Chem.
1998,
63:
10035
<A NAME="RC00402SS-23">23</A>
Sanghvi YS.
Guo Z.
Pfundheller HM.
Converso A.
Org. Process Res. Dev.
2000,
4:
175
<A NAME="RC00402SS-24">24</A>
1H-Tetrazole is an explosive chemical and has also been reported to be toxic.
[23]
<A NAME="RC00402SS-25">25</A>
Krotz AH.
Klopchin PG.
Walker KL.
Srivatsa GS.
Cole DL.
Ravikumar VT.
Tetrahedron Lett.
1997,
38:
3875
<A NAME="RC00402SS-26">26</A>
Vargeese C.
Carter J.
Yegge J.
Krivjansky S.
Settle A.
Kropp E.
Peterson K.
Pieken W.
Nucleic Acids Res.
2000,
26:
1046
<A NAME="RC00402SS-27">27</A>
Pedersen DS.
Rosenbohm C.
Synthesis
2001,
2431
<A NAME="RC00402SS-28">28</A>
Brown T.
Brown DJS. In
Oligonucleotides and Analogues - A Practical Approach
Eckstein F.
Oxford University Press;
Oxford:
1991.
p.9
<A NAME="RC00402SS-29">29</A>
Nurminen EJ.
Mattinen JK.
Lönnberg H.
J. Chem. Soc., Perkin Trans. 2
1998,
1621
<A NAME="RC00402SS-30">30</A>
Berner S.
Mühlegger K.
Seliger H.
Nucleic Acids Res.
1989,
17:
853
<A NAME="RC00402SS-31">31</A>
Dahl BM.
Nielsen J.
Dahl O.
Nucleic Acids Res.
1987,
15:
1729
<A NAME="RC00402SS-32">32</A>
Barone AD.
Tang J.-Y.
Caruthers MH.
Nucleic Acids Res.
1984,
12:
4051
<A NAME="RC00402SS-33">33</A>
At no time during our catalytic studies with DCI did we detect any nucleobase phosphitylated
products. We have attributed this to the expected higher reactivity of the nucleobase
phosphoramidites resulting in their hydrolyses during the aqueous bicarbonate workup
prior to HPLC analysis.
<A NAME="RC00402SS-34">34</A>
All phosphitylation reactions were completed in less than 2 h except for the G phosphoramidite
7b synthesis, which took up to 4 h for completion.