Subscribe to RSS
DOI: 10.1055/s-2002-20486
Lithiated Dimethoxymethyl Diphenyl Phosphine Oxide, A Versatile Formiate Carbanion Equivalent
Publication History
Publication Date:
05 February 2007 (online)

Abstract
Aldehydes are homologated to the corresponding α-hydroxy methyl esters using lithiated dimethoxymethyl diphenyl phosphine oxide. The primary addition product of this Horner-Wittig process collapses to the corresponding α-hydroxy ester under proton-catalyzed conditions.
Key words
aldehydes - amino aldehydes - carbanions - hydrolyses - Wittig reactions
- 1a
Dondoni A.Colombo L. In Advances in the Use of Synthons in Organic Chemistry Vol. 1:Dondoni A. JAI Press Ltd.; London: 1993. p.1 - 1b
Ager DJ. In Umpoled SynthonsHase TA. Wiley Interscience; New York: 1987. p.19 - Selected examples of sulfur-stabilized d1-synthons:
- 2a
Corey EJ.Seebach D. Angew. Chem., Int. Ed. Engl. 1965, 4: 1075 ; Angew. Chem. 1965, 77, 1134 - 2b
Guanti G.Banfi L.Guaragna A.Narisano E. J. Chem. Soc., Chem. Commun. 1986, 138 - 2c
Ogura K.Tsuruda T.Takahashi K.Iida H. Tetrahedron Lett. 1986, 27: 3665 - 3a
Colombo L.Di Giacomo M.Brusotti G.Milano E. Tetrahedron Lett. 1995, 36: 2863 - 3b
Ager DJ.East MB. J. Org. Chem. 1986, 51: 3983 - 3c
Quintard J.-P.Elissondo P.Mouko-Mpegna D. J. Organomet. Chem. 1983, 251: 175 - 3d
Quintard J.-P.Elissondo P.Jousseaume B. Synthesis 1984, 495 - 4a
Magnus P.Roy G. Organometallics 1982, 1: 553 - 4b
Yoshida J.Matsunaga S.Isoe S. Tetrahedron Lett. 1989, 30: 219 - 4c
Ager DJ.Gano JE.Parekh SI. J. Chem. Soc., Chem. Commun. 1989, 1256 - 5a
Mandai T.Yamaguchi M.Nakayama Y.Otera J.Kawada M. Tetrahedron Lett. 1985, 26: 2675 - 5b
de Groot A.Hansen BJ. Synth. Commun. 1983, 13: 985 - 5c
Otera J. Synthesis 1988, 95 - 6a
Katritzky AR.Cheng Y.-X.Yannakopoulou K.Lue P. Tetrahedron Lett. 1989, 30: 6657 - 6b
Katritzky A.Drewniak-Deyrup M.Lan X.Brunner F. Heterocycl. Chem. 1989, 26: 829 - 7a
Corey EJ.Boger DL. Tetrahedron Lett. 1978, 19: 5 - 7b
Chikashita H.Ishibaba M.Ori K.Itoh K. Bull. Chem. Soc. Jpn. 1988, 61: 3637 - 8a
Dondoni A. Pure Appl. Chem. 1990, 62: 643 - 8b
Dondoni A. In Modern Synthetic MethodsScheffold R. Helvetica Chimica Acta; Basel: 1992. p.377 ; and references cited therein - 11 The preparation of aldehyde 11 was achieved according to:
Steurer S.Podlech J. Eur. J. Org. Chem. 1999, 1551 - Reviews on the Horner-Wittig reaction:
- 12a
Clayden J.Warren S. Angew. Chem., Int. Ed. Engl. 1996, 35: 241 ; Angew. Chem. 1996, 108, 261 - 12b
Maryanoff BE.Reitz AB. Chem. Rev. 1989, 89: 863 - 13
van Schaik TAM.Henzen AV.van der Gen A. Tetrahedron Lett. 1983, 24: 1303 - 14a
Kirschning A.Dräger G.Jung A. Angew. Chem., Int. Ed. Engl. 1997, 36: 253 ; Angew. Chem. 1997, 109, 253 - 14b
Monenschein H.Dräger G.Jung A.Kirschning A. Chem. Eur. J. 1999, 5: 2270 - 15
Sourkouni-Argirusi G.Kirschning A. Org. Lett. 2000, 2: 3781
References
Typical Procedure for the Formylation of Aldehydes: (1S,2RS)- [1-Benzyl-3-(diphenyl-phosphinoyl)-2-hydroxy-3,3-dimethoxy-propyl] carbamic acid
benzyl ester(18): To a solution of lithiumdiisopropyl amide (5 mmol) in dry THF (60 mL) was added
dimethoxymethyl phosphine oxide (332 mg, 6 mmol) in 20 mL dry THF at -110 °C under
nitrogen atmosphere. Two minutes after addition the respective aldehyde 11 (425 mg, 1.5 mmol) in dry THF (20 mL) was added dropwise, followed directly by aq
hydrolysis. Once the mixture is warmed up to r.t. it was concentrated in vacuo. After
the resulting aq suspension was extracted with dichloromethane (5 ×), the combined
organic layers were dried over MgSO4 and evaporated. The residue was purified by column chromatography (silica gel; petroleum
ether/ethyl acetate 1:4) to yield the adduct 18 (353 mg, 0.63 mmol, 42%).
Selected spectroscopic data for adduct 18: 1H NMR (200 MHz, CDCl3): δ = 8.12-7.75 (m, 4 H, H-aromat.), 7.55-7.08 (m, 14 H, H-aromat.), 7.05-6.94 (m,
2 H, H-aromat.), 6.08 (d, J = 6.8 Hz, 1 H, OH), 5.08 (d, J = 1.8 Hz, 1 H, NH), 4.96 and 4.82 (2 d, J = 12.5 Hz, 2 H, PhCH2O), 3.90 (m, 2 H, 1-H, 2-H), 3.29 and 3.19 (2 s, 6 H, 2 × OMe), 2.94 (m, 2 H, PhCH2); 13C NMR (100 MHz, CDCl3): δ = 157.2 (s, NCO2), 138.3, 136.7, 133.0, 132.8 (s, C-aromat.), 2 × 132.1, 131.9, 2 × 131.7, 2 × 131.6,
131.5, 131.4, 129.2, 128.6, 128.4, 128.3, 128.2, 2 × 128.1, 2 × 127.8, 126.0 (d, C-aromat.),
103.9 (s, C-3), 74.8 (d, C-2), 66.3 (t, PhCH2O), 60.4 (d, C-1), 52.6 (q, OMe), 51.7 (q, OMe′), 38.2 (t, CH2Ph).
Typical Experimental Procedure for the Generation of α-Hydroxy Esters by Proton-induced
Fragmentation: Dichloromethane (200 mL) and hydrochloric acid (2 N, 10 mL) were stirred for 10
min. The aq phase was seperated and the acidity (1.5 mmol/L) of the organic phase
was determined by titration with 0.1 N NaOH. (2RS,3S)-3-Benzyloxycarbonylamino-2-hydroxy-4-phenyl butyric acid methyl ester(25): Acidic dichloromethane (1.5 mL) was added to a solution of the phosphine oxide
18 (112 mg, 0.2 mmol) in dichloromethane (3 mL). The pure ester 25 was obtained after gel filtration (67 mg, 0.195 mmol, 97.5%).
Selected spectroscopic data for the hydroxy ester: (syn-25); Mp 92 °C (CH2Cl2); [a]23
D +7.9 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3): δ = 7.38-7.20 (m, 10 H, H-aromat.), 5.09 (d, J = 8.0 Hz, 1 H, NH), 5.04 (s, 2 H, PhCH2O), 4.33 (dddd, J = 8.9, 8.0, 7.1 and 1.8 Hz, 1 H, 3-H), 4.08 (d, J = 1.8 Hz, 1 H, 2-H), 3.70 (s, 3 H, OMe), 2.94 (s, 1 H, OH), 2.97 and 2.89 (2 × dd,
J = 13.2 and 8.9 Hz, J = 13.2 and 7.1 Hz, 2 × 1 H, 4-H, 4-H′); 13C NMR (100 MHz, CDCl3): δ = 174.1 (s, C-1), 155.7 (s, NCO2), 137.2, 136.3 (s, C-aromat.), 129.4, 128.6, 128.5, 128.1, 127.9, 126.7 (d, C-aromat.),
70.1 (d, C-2), 66.8 (t, PhCH2O), 54.7 (d, C-3), 52.9 (q, OMe), 38.3 (t, C-4).
(anti-25); Mp 120 °C (CH2Cl2); [a]22.5
D +73.6, (c 1.0, CHCl3); 1H NMR (200 MHz, CDCl3): δ = 7.40-7.14 (m, 10 H, H-aromat.), 5.12 (d, J = 8.8 Hz, 1 H, NH), 5.05 (s, 2 H, PhCH2O), 4.41 (m, 1 H, 3-H), 4.34 (m, 1 H, 2-H), 3.57 (s, 3 H, OMe), 3.22 (s, 1 H, OH),
2.8 (m, 2 H, 4-H); 13C NMR (50 MHz, CDCl3): δ = 173.0 (s, C-1), 155.9 (s, NCO2), 136.8, 136.3 (d, C-aromat.), 129.4, 128.5, 128.4, 128.1, 128.0, 126.7 (s, C-aromat.),
72.2 (d, C-2), 66.8 (t, PhCH2O), 54.6 (d, C-3), 52.7 (q, OMe), 35.6 (t, C-4).
The absolute and relative configuration of both diastereomers 25 was independently confirmed after t-BuOK-promoted elimination followed by asymmetric dihydroxylation using ADmix-α (affording
anti-25) or ADmix-β (affording syn-25). The configuration was determined as described in ref.
[14]
(Scheme
[4]
).
Scheme 4