Klin Monbl Augenheilkd 2001; 218(11): 702-709
DOI: 10.1055/s-2001-18661
ÜBERSICHT

Georg Thieme Verlag Stuttgart · New York

Mikroskopgestützte Laserchirurgie - zelluläre Laserchirurgie in der Augenheilkunde. Eine Übersicht[1] [2]

Cellular surgery with the laser. A reviewFranz Fankhauser
  • Lindenhofspital, CH Bern
Further Information

Publication History

Publication Date:
30 November 2001 (online)

Zusammenfassung

Eine Reihe von Lasermethoden erlaubt, zelluläre und subzelluläre Laserchirugie zu realisieren, ohne dass es zu extrafokalen, kollateralen Schäden kommt (mikroskopische Laserchirurgie). Die dazu notwendigen Lasermethoden, insbesondere die eines Lasermessers und einer Laserpinzette, werden dargestellt. Die Laserpinzette erlaubt, mittels des Strahldruckes und einer geeigneten Strahlführung, zelluläre oder subzelluläre Elemente oder sogar Makromoleküle, die man bestrahlen möchte, völlig atraumatisch festzuhalten. Bei der Anwendung von Kurzzeitmethoden ist es auch möglich, Schadeneffekte von nur 1 μm Durchmesser zu realisieren. Eine reversible Schädigung der Zellmembran erlaubt es ferner, Moleküle und Genmaterial atraumatisch in eine Zelle einzubringen und dadurch deren genetisches Verhalten zu verändern. Für Zellmanipulationen bei Befruchtungsexperimenten dürfte eine Kurzpulslasermethode am besten geeignet sein. In der Ophthalmologie wird zur Zeit mit Kurzpulslaserverfahren eine lokale Wirkung im Bereich des Trabekelwerkes beim Glaukom und der Netzhaut bei Netzhautpathologien in Extrapolation lasermikroskopischer Methoden angestrebt.

This is a review of a number of laser methods, allowing to realize strongly localized, atraumatic, molecular, cellular, and subcellular microeffects. New instruments are the laser tweezers and the laser knife to be used with a microscope (microscopical surgery). Laser tweezers allow fixation, by means of the radiation pressure of molecular, cellular, and subcellular elements, of diameters as small as 1 μm. These may be irradiated atraumatically by means of short-pulsed lasers. A reversible damage of the cell membrane allows to introduce living genetic material into living cells and to reversibly modify their genetic behaviour. Micromanipulation/irradiation of living cells by means of the short-pulse laser method of living cells may be optimal in in-vivo fertilization experiments. Short-pulse laser methods have been tentatively introduced in ophthalmology and highly localized effects have been realized in the trabecular meshwork for the treatment of glaucoma and in the retina in retinal pathology.

1 Manuskript erstmalig eingereicht am 4. 3. 01 und in der vorliegenden Form angenommen am 25. 4. 01.

2 Herrn Professor Dr. G. O. H. Naumann gewidmet.Cogito ergo sum.

Literatur

1 Manuskript erstmalig eingereicht am 4. 3. 01 und in der vorliegenden Form angenommen am 25. 4. 01.

2 Herrn Professor Dr. G. O. H. Naumann gewidmet.Cogito ergo sum.

  • 1 Berns  M W, Tadir  Y, Liang  H, Tromberg  B. .  Methods in cell biology.. 1989;;  55: 71-98.
  • 2 Berns  M W. Laser Scissors and Tweezers.  Scientific American. 1989;;  264: 84-90.
  • 3 Berns  M W, Rounds  D E. Cell Surgery by Laser.  Scientific American, February. 1970;;  222: 98-103.
  • 4 Berns  M W. Biological microirradiation. Prentice-Hall, Englewood Cliffs, New Jersey; 1974;: pp 152.
  • 5 Chu  S. Laser trapping of of neutral particles.  Scientific American, February. 1992;;  266: 48-54.
  • 6 Tschakotine  S. Die mikroskopische Strahlstrichmethode; eine Zelloperationsmethode.  Biol Zentralb. 1984;;  32: 623.
  • 7 Bessis  M, Gires  F, Mayer  G, Nomarski  G. Irradiation des cellules a l'aide d'un laser rubis.  CR Acad Sci. 1962;;  225: 1010-1012.
  • 8 Saks  N M, Zuzdo  R, Kopac  M J. Microsurgery of living cells by ruby laser irradiation.  Ann NY Acad Sci. 1965;;  122: 695-712.
  • 9 Berns  M W. Growth and morphogenesis during the postembryonic development of the milliped. Narceus Annularis. Cornell University, Ph.D.Thesis, New York; 1968.
  • 10 Ashkin  A. Applications of radiation pressure.  Science. 1980;;  210: 1081-1088.
  • 11 Ashkin  A, Dziedzic  J M. Optical trapping and manipulation of viruses and bacteria.  Science. 1987;;  235: 1517-1520.
  • 12 Ashkin  A, Dziedzic  J M. Internal cell manipulations using infrared laser traps.  Proc Natl Acad Sci USA. 1989;;  86: 7914-7918.
  • 13 Ashkin  A, Dziedzic  J M, Yamane  T. Optical trapping and manipulation of single infrared laser beams.  Nature. 1987;;  330: 769-771.
  • 14 Ashkin  A, Dziedzic  J M, Bjorkholm  J E, Chu  S. Observation of a single beam gradient force optical trap for dielectric particles.  Optic Lett. 1986;;  11: 288-296.
  • 15 Berns  M W, Wright  W H, Wiegand-Steubing  R. Laser microbeam as a tool in cell biology.  Int Rev Cyt. 1991;;  129: 1-44.
  • 16 Greulich  K O, Leitz  G. Light microsensor and manipulator: Laser microbeams and optical tweezers.  Exp Tech Phys. 1994;;  40: 1-14.
  • 17 Berns  M W. A possible two photon effect in vitro using a focused laser beam.  Biophys J. 1976;;  16: 973-977.
  • 18 Calmettes  P P, Berns  M W. Laser-induced multiphoton processes in living cells.  Proc Natl Acad Sci USA. 1983;;  80: 7197-7199.
  • 19 Berns  M W, Chong  L K, Hammer-Wiulson  M, Miller  K, Siemens  A. Genetic microsurgery by laser: Establishment of a clonal population of rat kangaroo cells (PTK2) with a directed defiency in a chromosomal nucleolar organizer.  Chromosoma. 1979;;  73: 1-8.
  • 20 Berns  M W, Aist  J, Edwards  J, Strahs  K, Girton  J et al. Laser microsurgery in cell and development biology.  Science. 1981;;  213: 505-513.
  • 21 Djabali  M, Nguyen  C, Bianno  I, Oostra  B. Laser microdissection of the fragile x region: identification of cosmic clones of conserved sequences in this region.  Genomics. 1991;;  10: 1053-1062.
  • 22 He  W, Liu  Y, Smith  M, Berns  M. Laser microdissection for generation of a human chromosome region-specific library.  Microanal. 1997;;  3: 47-52.
  • 23 He  W. Laser microdissection and its appliction to the human tuberous sclerosis 1 gene region on chromosome 9q 34. Irvine. University of California, California, Ph.D.Thesis; 1995.
  • 24 Monajembashi  S, Cremer  C, Cremer  T, Wolfrum  J, Greulich  K O. Microdissection of human chromosomes by laser microbeam.  Exp Cell Res. 1986;;  167: 262-265.
  • 25 Weber  G, Monajembashi  S, Greulich  K O, Wolfrum  J. Injection of DNA into plant cells with a laser microbeam.  Naturwissenschaften. 1988;;  75: 35.
  • 26 Tao  W, Wilkinson  J, Stanbridge  E J, Berns  M W. Direct gene transfer into human cultured cells facilitated by laser micropuncture of cell membrane.  Proc Natl Acad Sci USA. 1987;;  84: 4180-4184.
  • 27 Berns  M W. Growth and morphogenesis during the postembryonic development of the milliped. Narceus Annularis. Cornell University, New York, Ph.D.Thesis; 1968.
  • 28 Berns  M W, Chong  L K, Hammer-Wilson  M, Miller  K, Siemens  A. Genetic microsurgery by laser: Establishment of a clonal population of rat kangaroo cells (PTK2) with a directed defiency in a chromosomal nucleolar organizer.  Chromosoma. 1979;;  73: 1-8.
  • 29 Berns  M W, Aist  J, Edwards  J, Strahs  K, Girton  J et al. Laser microsurgery in cell and development biology.  Science. 1981;;  213: 505-513.
  • 30 Tsukakoshi  M, Kurata  S, Nomiyay  Y, Ikava  Y, Kasuya  T. A novel method of DNA transfer by laser microbeam surgery.  Appl Phys. 1984;;  B 35: 135-148.
  • 31 Berns  M W, Tadir  Y, Hong  Liang, Tromberg  B. Laser Scissors and Tweezers. In:.  Methods in Cell Biology Vol 55. 1998;;  pp 71-98.
  • 32 Berns  M W, Liang  Hong, Sonek  G J, Yagang  L. Micromanipulation of chromosome using laser microsurgery (Optical Scissors) and laser-induced optical forces (Optical Tweezers). In: Cell Biology: A Laboratory Handbook, Second Edition. Vol 2. Academic Press, New York; 1998;: pp 217-227.
  • 33 Zirke  R E. Partial cell irradiation.  Adv Biol Med Phys. 1957;;  5: 103-146.
  • 34 Zirke  R E. Ultraviolet microbeam irradiation of net cell cytoplasma.  Rad Res. 1970;;  516-537.
  • 35 Colon  J M, Sarosi  P, McGovern  P G, Ashkin  A, Dziedzic  J M, Skurnick  J, Weiss  G, Bonder  E M. Controlled micromanipulation of human spermatozoa in three dimensions with an infrared laser optical trap: Effect on sperm velocity.  Fert Steril. 1992;;  57: 695-698.
  • 36 Schutze  K, Clemeny-Sengewald  A, Berg  F D. Laser zona drilling and sperm transfer into the perivitelline space.  Human Reprod. 1993;;  8: 390.
  • 37 Tadir  Y, Wright  W H, Vafa  O, Ord  T, Asch  R, Berns  M W. Micromanipulation of sperm by laser-generated optical trap.  Fertil Steril. 1989;;  52: 870-873.
  • 38 Tadir  Y, Neev  J, Ho  P, Berns  M W. Lasers for gamete micromanipulation: Basic concepts.  J Assist Reprod Genet. 1993;;  10: 121-125.
  • 39 Cohen  J. Assisted hatching of human embryos.  J IVF and ET. 1991;;  8: 179-190.
  • 40 Anderson  R R, Parrish  J A. Selective Photothermolysis: Precise Microsurgery by Selective Absorption of Pulsed Radiation.  Science. 1983;;  220: 524-527.
  • 41 Hüttmann  G, Birngruber  R. On the Possibility of High-Precision Photothermal Microeffects and the Measurement of Fast Thermal Denaturation of Proteins.  IEEE J Selec Topics Quant Electr. 1999;;  5: 954-962.
  • 42 Van Gemert  M JC, Welch  A J, Pickering  J W, Tan  O T. Laser Treatment of Port Wine Stains. In: Welch AJ and Van Gemert (ed). Optical-Thermal Responses of Laser-Irradiated Tissue. Plenum Press, New York; 1995.
  • 43 Roider  F, Hillenkamp  T, Flotte  R, Birngruber  R. Microcoagulation: Selective Effects of Repetitive Short Laser Pulses.  Proc Natl Acad Sci USA. 1993;;  90: 8643-8647.
  • 44 Latina  M A, Sibayan  D H, Shin  D H, Noecker  R J, Marcellino  G. Q-switched 532 nm Nd:YAG Laser Trabeculoplasty (Selective Laser Trabeculoplasty).  Ophthalmology. 1998;;  105: 2082-2088.
  • 45 Marmor  M F. Structure, function, and disease of the retinal pigment epithelium. In: Marmor MF and Wolfensberger TJ. The Retinal Pigment Epithelium Function and Disease. Oxford University Press, New York; 1998;: pp 3-9.
  • 46 Hughes  B A, Gallemore  R P, Miller  S S. Transport mechanisms in the retinal pigment epithelium. In: Marmor MF and Wolfensberger TJ. The Retinal Pigment Epithelium Function and Disease. Oxford University Press, New York; 1998;: pp 103-134.
  • 47 Marmor  M F. Control of subreinal fluid. In: Marmor MF and Wolfensberger TJ. The Retinal Pigment Epithelium Function and Disease. Oxford University Press, New York; 1998;: pp 420-438.
  • 48 Spaide  R F, Yannuzzi  L A. Manifestation and Pathophysiology of Serous Detachment of the Retinal Pigment Epithelium and Retina. In: Marmor MF and Wolfensberger TJ. The Retinal Pigment Epithelium Function and Disease. Oxford University Press, New York; 1998;: pp 439-458.
  • 49 Hageman  G S, Kuehn  M H. Biology of the Interphotoreceptor Matrix - Retinal Pigment Epithelium - Retina Interface. In: Marmor MF and Wolfensberger TJ. The Retinal Pigment Epithelium Function and Disease. Oxford University Press, New York; 1998;: pp 361-391.
  • 50 Birngruber  R, Hillenkamp  F, Gabel  V P. Theoretical Investigations of Laser Thermal Injury.  Health Phys. 1985;;  48: 781-796.
  • 51 Macular Photocoagulation Study Group. . Laser photocoagulation of subfoveal neovascular lesions of age-related macular degeneration: updated findings from clinical trials.  Arch Ophthalmol. 1993;;  111: 1200-1209.
  • 52 Macular Photocoagulation Study Group. . Visual outcome after laser photocoagulation for subfoveal choroidal neovascularization secondary to age-related macular degeneration: the influence of initial lesion size and initial visual acuity.  Arch Ophthalmol. 1994;;  112: 480-488.
  • 53 Product Monograph. CIBA Vision AG, 8180 Bülach, Switzerland; 2000.
  • 54 Reichel  E, Berrocal  A M, Ip  M et al. Transpupillary thermotherapy (TTT) of occult subfoveal choroidal neovascularization in patients with age-related macular degeneration.  Ophthalmology. 1999;;  106: 1908-1914.
  • 55 Lin  C P, Kelly  M W, Sibayan  A B, Latina  M A, Anderson  R R. Selective Cell Killings by Microparticle Absorption of Pulse Laser Radiation.  IEEE J Sel Top Quant Electr. 1999;;  5: 963-968.
  • 56 Johnson  D H, Johnson  M. How does nonpenetrating glaucoma surgery work?.  J Glaucoma. 2001;;  10: 55-67.
  • 57 Schnurrbusch  U EK, Welt  C, Horn  L C, Wiedemann  P, Wolf  C. Histologic findings of surgically excised choroidal neovascular membranes after photodynamic therapy. ARVO abstracts.  IOVS. 2001;;  42: S226.
  • 58 Schüle  G, Hüttmann  G, Roider  I, Birngruber  R, Brinkmann  R. On-line-Kontrolle für die selektive Mikrokoagulation.  Biomed Optics Technical Digest. 1999;;  103-104.
  • 59 Marshall  J, Hussain  A A, Starita  C, Moore  D J, Patmore  A L. Aging and Bruch's membrane. In: Marmor MF and Wolfensberger TJ. The Retinal Pigment Epithelium Function and Disease. Oxford University Press, New York; 1998;: pp 669-692.
  • 60 Flower  R W, Von Kerckek  C, Zhu  L, Ernest  A, Eggleton  C, Topoleski  L DT. Theoretical Investigation of the Role of Choriocappillaris Blood Flow in Treatment of Subfoveal Choroidal Neovascularization Associated With Age-related Macular Degeneration.  Am J Ophthalmol. 2001;;  132: 85-93.
  • 61 Shariga  F, Ojima  Y, Matsuo  T, Takasu  I, Matsuo  N. Feeder vessel photocoagulation of subfoveal choroidal neovascularization secondary to age-related macular degeneration.  Ophthalmology. 1998;;  105: 662-669.
  • 62 Staurenghi  G, Orzalesi  N, La Capria  A, Aschero  M. Laser treatment of feeder vessels in subfoveal choroidal neovascular membranes: a revisitation using dynamic indocyanine green angiography.  Ophthalmology. 1998;;  105: 2297-2305.
  • 63 Liang  H et al. Chromosomes are target sites for photodynamic therapy as demonstrated by subcellular microirradiation.  J Photochemistry, Photobiology. 2000;;  54: 175-193.
    >