Abstract
A one-pot procedure for the conversion of carboxylic acids into homoallylic alcohols
under remarkably mild and selective conditions is described. The triethylammonium
salts of alkanoic acids are treated with Bu3 P/PhSeCl to afford the corresponding acyl selenides that are reduced to aldehydes
by tributyltin hydride under radical conditions. Direct in situ trapping of the aldehydes
by allylboronates affords the desired homoallylic alcohols. Preparation of optically
active alcohols by use of a tartrate-modified allylboronate is possible and the enantioselectivities
are similar to the ones obtained when isolated aldehydes are employed.
Key words
radicals - allylboronates - acyl selenides - allylation - carboxylic acid - reduction
References <A NAME="RZ02801SS-1">1 </A>
New address: Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3,
3000 Bern 9, Switzerland. E-mail: philippe.renaud@ioc.unibe.ch.
<A NAME="RZ02801SS-2">2 </A>
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
<A NAME="RZ02801SS-3">3 </A>
Roush WR. In Comprehensive Organic Chemistry
Vol. 2:
Trost BM.
Fleming I.
Heatcook CH.
Pergamon Press;
Oxford:
1991.
p.1
<A NAME="RZ02801SS-4A">4a </A>
Roush WR. In Houben-Weyl, Stereoselective Synthesis
Vol E21:
Helmchen G.
Hoffman WR.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.1410
<A NAME="RZ02801SS-4B">4b </A>
Matteson DS.
Stereodirected Synthesis with Organoboranes
Springer-Verlag;
Berlin:
1995.
Via Weinreb amides:
<A NAME="RZ02801SS-5A">5a </A>
Nahm S.
Weinreb SM.
Tetrahedron Lett.
1981,
22:
3815
<A NAME="RZ02801SS-5B">5b </A>
Fehrentz J.-A.
Castro B.
Synthesis
1983,
676
<A NAME="RZ02801SS-5C">5c </A>
Goel OP.
Krolls U.
Stier M.
Kesten S.
Org. Synth.
1988,
67:
69
<A NAME="RZ02801SS-5D">5d </A> Via thioesters:
Fukuyama T.
Lin S.-C.
Li L.
J. Am. Chem. Soc.
1990,
112:
7050
<A NAME="RZ02801SS-5E">5e </A> Via TMS esters:
Chandrasekhar S.
Kumar MS.
Muralidkar B.
Tetrahedron Lett.
1998,
39:
909
<A NAME="RZ02801SS-5F">5f </A> Via reduction/oxidation:
Brown HC.
Rao CG.
Kulkarni SU.
Synthesis
1979,
704
<A NAME="RZ02801SS-6">6 </A>
Batty D.
Crich D.
Synthesis
1990,
273
<A NAME="RZ02801SS-7A">7a </A> The reduction of acyl selenides to aldehydes is well established:
Pfenninger J.
Heuberger C.
Graf W.
Helv. Chim. Acta
1980,
63:
2328 ; however, this reaction is not commonly used for preparative purposes
<A NAME="RZ02801SS-7B">7b </A> For a comprehensive review on acyl radical chemistry, see:
Chatgilialoglu C.
Crich D.
Komatsu M.
Ryu I.
Chem. Rev.
1999,
1991
<A NAME="RZ02801SS-8A">8a </A>
Hoffmann RW.
Endesfelder A.
Zeiss H.-J.
Carbohydr. Res.
1983,
123:
320
<A NAME="RZ02801SS-8B">8b </A>
Hoffmann RW.
Weidmann U.
Chem. Ber.
1985,
118:
3966
<A NAME="RZ02801SS-8C">8c </A>
Roush WR.
Adam MA.
Walts AE.
Haris DJ.
J. Am. Chem. Soc.
1986,
108:
3422
<A NAME="RZ02801SS-8D">8d </A>
Hoffmann WR.
Metternich R.
Lanz JW.
Liebigs Ann. Chem.
1987,
881
<A NAME="RZ02801SS-8E">8e </A>
Hoffmann RW.
Wolff JJ.
Chem. Ber.
1991,
124:
563
<A NAME="RZ02801SS-8F">8f </A>
Jego JM.
Carboni B.
Vaultier M.
Bull. Soc. Chim. Fr.
1992,
554
<A NAME="RZ02801SS-8G">8g </A>
Hoffmann RW.
Stiasny H.-C.
Krueger J.
Tetrahedron
1996,
52:
7421
<A NAME="RZ02801SS-8H">8h </A>
Cavallaro CL.
Herpin T.
McGuinness BF.
Shimshock YC.
Dolle RE.
Tetrahedron Lett.
1999,
40:
2411
<A NAME="RZ02801SS-9A">9a </A>
Roush WR.
Walts AE.
Hoong LK.
J. Am. Chem. Soc.
1985,
107:
8186
<A NAME="RZ02801SS-9B">9b </A>
Roush WR.
Kageyama MA.
Tetrahedron Lett.
1985,
26:
4327
<A NAME="RZ02801SS-9C">9c </A>
Roush WR.
Straub JA.
Tetrahedron Lett.
1986,
27:
3349
<A NAME="RZ02801SS-9D">9d </A>
Roush WR.
Palkowitz AD.
J. Am. Chem. Soc.
1987,
109:
953
<A NAME="RZ02801SS-9E">9e </A>
Roush WR.
Park JC.
J. Org. Chem.
1990,
55:
1143
<A NAME="RZ02801SS-9F">9f </A>
Roush WR.
Hoong LK.
Palmer MAJ.
Park JC.
J. Org. Chem.
1990,
55:
4109
<A NAME="RZ02801SS-9G">9g </A>
Roush WR.
Hoong LK.
Palmer MAJ.
Straub JA.
Palkowitz AD.
J. Org. Chem.
1990,
55:
4117
<A NAME="RZ02801SS-9H">9h </A>
Roush WR.
Ando K.
Powers DB.
Palkowitz AD.
Halterman RL.
J. Am. Chem. Soc.
1990,
112:
6339
<A NAME="RZ02801SS-9I">9i </A>
Roush WR.
Palkowitz AD.
Ando K.
J. Am. Chem. Soc.
1990,
112:
6348
<A NAME="RZ02801SS-9J">9j </A>
Roush WR.
Straub JA.
VanNieuwenhze MS.
J. Org. Chem.
1991,
56:
1636
<A NAME="RZ02801SS-9K">9k </A>
Roush WR.
Lin X.
Straub JA.
J. Org. Chem.
1991,
56:
1649
<A NAME="RZ02801SS-9L">9l </A>
Roush WR.
Park JC.
Tetrahedron Lett.
1991,
32:
6285
<A NAME="RZ02801SS-9M">9m </A>
Roush WR.
Hunt JA.
J. Org. Chem.
1995,
60:
798
Kinetic studies:
<A NAME="RZ02801SS-10A">10a </A>
Fischer H.
Henning P.
Acc. Chem. Res.
1987,
20:
200
<A NAME="RZ02801SS-10B">10b </A>
Tsentalovich YP.
Fisher H.
J. Chem. Soc., Perkin Trans. 2
1994,
729
<A NAME="RZ02801SS-10C">10c </A>
Chatgilialoglu C.
Ferreri C.
Lucarini M.
Pedrielli P.
Pedulli GF.
Organometallics
1995,
14:
2672
Synthetic applications:
<A NAME="RZ02801SS-11A">11a </A>
Pfenninger J.
Graf W.
Helv. Chim. Acta
1980,
63:
2328
<A NAME="RZ02801SS-11B">11b </A>
Quinrante J.
Escolano C.
Bonjoch J.
Synlett
1997,
179
<A NAME="RZ02801SS-11C">11c </A>
Stojanovic A.
Renaud P.
Synlett
1997,
181
<A NAME="RZ02801SS-12">12 </A>
Roush (ref.
[9f ]
) has reported that allylation reactions are usually higher yielding in toluene than
in THF.
<A NAME="RZ02801SS-13">13 </A>
Wuts PGM.
Jung Y.-W.
J. Org. Chem.
1991,
56:
365
<A NAME="RZ02801SS-14">14 </A>
Renaud P.
Lacôte E.
Quaranta L.
Tetrahedron Lett.
1998,
39:
2123
<A NAME="RZ02801SS-15">15 </A>
Jones P.
Knochel P.
J. Org. Chem.
1999,
64:
186
<A NAME="RZ02801SS-16">16 </A>
Reindel F.
Niederlander K.
Chem. Ber.
1935,
68:
1243
<A NAME="RZ02801SS-17">17 </A>
Bartlett PA.
Johnson WS.
Elliott JD.
J. Am. Chem. Soc.
1983,
105:
2088